• Title/Summary/Keyword: spring mass

Search Result 909, Processing Time 0.025 seconds

Use of equivalent spring method for free vibration analyses of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.713-735
    • /
    • 2005
  • Due to the complexity of mathematical expressions, the literature concerning the free vibration analysis of plates carrying multiple three-degree-of-freedom (dof) spring-mass systems is rare. In this paper, the three degrees of freedom (dof's) for a spring-mass system refer to the translational motion of its lumped mass in the vertical ($\bar{z}$) direction and the two pitching motions of its lumped mass about the two horizontal ($\bar{x}$ and $\bar{y}$) axes. The basic concept of this paper is to replace each three-dof spring-mass system by a set of equivalent springs, so that the free vibration characteristics of a rectangular plate carrying any number of three-dof spring-mass systems can be obtained from those of the same plate supported by the same number of sets of equivalent springs. Since the three dof's of the lumped mass for each three-dof spring-mass system are eliminated to yield a set of equivalent springs, the total dof of the entire vibrating system is not affected by the total number of the spring-mass systems attached to the rectangular plate. However, this is not true in the conventional finite element method (FEM), where the total dof of the entire vibrating system increases three if one more three-dof spring-mass system is attached to the rectangular plate. Hence, the computer storage memory required by using the presented equivalent spring method (ESM) is less than that required by the conventional FEM, and the more the total number of the three-dof spring-mass systems attached to the plate, the more the advantage of the ESM. In addition, since manufacturing a spring with the specified stiffness is much easier than making a three-dof spring-mass system with the specified spring constants and mass magnitude, the presented theory of replacing a three-dof spring-mass system by a set of equivalent springs will be also significant from this viewpoint.

Influence of Two Successively-moving Spring-mass Systems with Initial Displacement on Dynamic Behavior of a Simply-supported Beam Subjected to Uniformly Distributed Follower Forces (초기 변위를 가지고 연속 이동하는 스프링-질량계가 등분포종동력을 받는 단순지지보의 동특성에 미치는 영향)

  • 윤한익;강혁준;유진석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.202-209
    • /
    • 2003
  • A simply supported beam subjected to a uniformly distributed tangential follower force and the two successively moving spring-mass systems upon it constitute this vibration system. The influences of the velocities of the moving spring-mass system, the distance between two successively moving spring-mass systems and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a simply supported beam by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a simply supported beam without two successively moving spring-mass systems, and three kinds of constant velocities and constant initial displacement of two successively moving spring-mass systems are also chosen. Their coupling effects on the transverse vibration of the simply supported beam are inspected too. In this study the simply supported beam is deflected with small vibration proportional to natural frequency of the moving spring-mass systems. According to the increasing of initial displacement of the moving spring-mass systems the amplitude of the small vibration of the simply supported beam is increased due to the spring force. The velocity of the moving spring-mass system more affect on the transverse deflection of simply supported beam than other factors of the system and the effect is dominant at high velocity of the moving spring-mass systems.

Car-to-Car Offset Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 부분정면충돌 모델링)

  • Lim, Jaemoon;Lee, Kwangwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • The objective of this study was to construct the spring-mass models for the car-to-car offset frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from the offset frontal crash test. The spring-mass model of the passenger car could effectively approximate the crash characteristics for the offset frontal barrier impact and the car-to-car offset frontal impact scenarios.

Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.659-676
    • /
    • 2008
  • The reports regarding the free vibration analysis of uniform beams carrying single or multiple spring-mass systems are plenty, however, among which, those with inertia effect of the helical spring(s) considered are limited. In this paper, by taking the mass of the helical spring into consideration, the stiffness and mass matrices of a spring-mass system and an equivalent mass that may be used to replace the effect of a spring-mass system are derived. By means of the last element stiffness and mass matrices, the natural frequencies and mode shapes for a uniform cantilever beam carrying any number of springmass systems (or loaded beam) are determined using the conventional finite element method (FEM). Similarly, by means of the last equivalent mass, the natural frequencies and mode shapes of the same loaded beam are also determined using the presented equivalent mass method (EMM), where the cantilever beam elastically mounted by a number of lumped masses is replaced by the same beam rigidly attached by the same number of equivalent masses. Good agreement between the numerical results of FEM and those of EMM and/or those of the existing literature confirms the reliability of the presented approaches.

On the consideration of the masses of helical springs in damped combined systems consisting of two continua

  • Gurgoze, M.;Zeren, S.;Bicak, M.M.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.167-188
    • /
    • 2008
  • This study is concerned with the establishment of the characteristic equation of a combined system consisting of a cantilever beam with a tip mass and an in-span visco-elastic helical spring-mass, considering the mass of the helical spring. After obtaining the "exact" characteristic equation of the combined system, by making use of a boundary value problem formulation, the characteristic equation is established via a transfer matrix method, as well. Further, the characteristic equation of a reduced system is obtained as a special case. Then, the characteristic equations are numerically solved for various combinations of the physical parameters. Further, comparison of the results with the massless spring case and the case in which the spring mass is partially considered, reveals the fact that neglecting or considering the mass of the spring partially can cause considerable errors for some combinations of the physical parameters of the system.

Influence of Successive Two Moving Spring-Mass Systems on Dynamic Behavior of a Simple Beam Subjected to Uniformly Distributed Follower Forces (연속이동 스프링-질량계가 등분포종동력을 받는 단순보의 동특성에 미치는 영향)

  • 유진석;윤한익;강혁준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.82-88
    • /
    • 2002
  • A simple beam subjected to a uniformly distributed tangential follower force and the successive two moving spring-mass systems upon it constitute this vibration system. The influences of the velocities of the moving spring-mass system, the distance between the successive two moving spring-mass systems and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a simple beam by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a simple beam without the successive two moving spring-mass systems, and three kinds of constant velocities and constant distance of the successive two moving spring-mass systems are also chosen. Their coupling effects on the transverse vibration of the simple beam are inspected too.

  • PDF

Effect of mass-spring-mass resonance in sound Insulation characteristic of multi-layered panels (다중판의 차음특성에 있어서 mass-spring-mass 공진효과)

  • 강현주;김재승;김상렬;엄재광;김봉기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.882-887
    • /
    • 2001
  • This paper deals with the effect of mass-spring-mass resonance that is a characteristics of the multi-layered panels in order to enhance sound insulation performance. From theoretical and experimental investigation, it is evident that tuning mass-spring-mass resonance by controlling elastic modulus of the core materials is very important to improve the STC value without increasing the weight of panels, resulting in enhancing STC value more than 10 dB.

  • PDF

Equivalent Impedance Modelling and Frequency Characteristic Analysis of Linear Oscillatory Actuator System Considering Mass/spring System (질량/스프링 계를 고려한 리니어 왕복 액추에이터 시스템의 등가 임피던스 모델링과 주파수 특성 해석)

  • Jeong, Sang-Seop;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.370-378
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and spring is one approach to safeguarding the structure against excessive vibrations. In this paper, the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are two types of vibration control system, active mass damper(AMD) and hybrid mass damper(HMD). AMD consists of the moving coil LOA with mass only The LOA of HMD with mass and spring is composed of the fixed coil and the movable permanent magnet(PM) field part. The PM field part composed magnet modules and iron coke, is the damper marts itself. We Present the motional resistance and reactance of mass/spring system and the system impedance of AMD and HMD according to the frequency.

Deformable Object Model for Improving Reality (실감성 향상을 위한 변형 물체 모델)

  • 전성원;김영일;허진헌;전차수;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.768-773
    • /
    • 2004
  • Developed in this paper a mass-spring engine to represent and manipulate deformable objects. The deformable object model is a basic technology in the ‘Tangible Space Initiative’. The mass-spring model consists of structural, shear and bending springs. Various forces like external, friction, gravity, spring, and damping forces are considered and collision with planes and spheres are treated. When a sphere collide mass-spring model, mass-spring engine calculates external force to interface mass-spring model. A prototype system is implemented in C on an MS windows machine.

  • PDF

A Study on the Effect of First-order Hold Method on the Stability Boundary of a Virtual Mass-spring Model (일차-홀드 방법이 가상 질량-스프링 모델의 안정성 영역에 미치는 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2020
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system with first-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. When first-order-hold is applied, we analyze the stability boundary of the virtual spring through the simulation according to the virtual mass and the sampling time. As the virtual mass increases, the stability boundary of the virtual spring gradually increases and then decreases after reaching the maximum value. The results are compared with the stability boundary in the haptic system with zero-order-hold. When a virtual mass is small, the stability boundary of a virtual spring in the system with first-order-hold is larger than that in the system with zero-order-hold.