• Title/Summary/Keyword: spraying system

Search Result 262, Processing Time 0.021 seconds

A Study for the Effect of Liquid Droplet Impingement Erosion on the Loss of Pipe Flow Materials (배관 재질 손상에 미치는 액적충돌침식의 영향에 대한 연구)

  • Kim, Kyung Hoon;Cho, Yun Su;Kim, Hyung Joon
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • Wall thinning of pipeline in power plants occurs mainly by flow acceleration corrosion (FAC), cavitation erosion (C/E), liquid droplet impingement erosion (LDIE). Wall thinning by FAC and C/E has been well investigated; however, LDIE in plant industries has rarely been studied due to the experimental difficulty of setting up a long injection of highly-pressurized air. In this study, we designed a long-term experimental system for LDIE and investigate the behavior of LDIE for three kinds of materials (A106B, SS400, A6061). The main control parameter was the air-water ratio (${\alpha}$), which was defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). In order to clearly understand LDIE, the spraying velocity (${\nu}$) of liquid droplets was controled larger then 160 m/s and the experiments were performed for 15 days. Therefore, this research focuses relation between erosion rate and air-water ratio on the various pipe-flow materials. NPP(nuclear power plant)'s LDIE prediction theory and management technique were drawn from the obtained data.

Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis (SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조)

  • Park, Je-Sin;Sim, Geon-Ju
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.144-154
    • /
    • 2005
  • The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

Size Distribution of Droplets Sprayed by an Orchard Sprayer (과수방제기 살포입자의 직경 분포특성)

  • 구영모;신범수;김상헌
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2001
  • Generated agri-chemical droplets by orchard sprayers are evaporated regenerated and transported along wind streams. The droplets are deposited to targets after changing their sizes, affecting the retention of droplets. An orchard sprayer, designed for spraying grapevines was studied on the spatial distribution of droplet size. The experimental variables were spray direction (0, 22.5, 45, 67.5 and 90˚), distance(2.5, 3.0 and 3.5 m) and fan speed (2,075 and 3,031 rpm). Droplet sizes were converted and analyzed from spray stains, sampled using water sensitive papers. The number median diameter (NMD) increased with an increase of the distance due to disappeared fine droplets (<50 ㎛): however, the volume median diameter (VMD) decreased due to shrunken large droplets (>100 ㎛). Fast fan speed delivered large droplets to 3.5 m, but the spatial distributions of NMD and VMD were not uniform. Slower fan speed decreased the possibility of evaporation and drift; therefore, plenty of droplets were maintained up to 3.0 m. The upward blasting distance was limited within 3 m, but the limit to the ground level was extended to 3.5 m. Concentrated wind and droplets to the ground level should be redistributed to upper canopy direction, leading more uniform deposits. High speed wind and system pressure should be avoided because of generating fine droplets, which would be disappeared and drifted away.

  • PDF

Study on the PVdF Nanofibers and Graphene Oxide Hybrid Membrane (PVdF 나노섬유와 Graphene Oxide 하이브리드막에 관한 연구)

  • Jung, Hyemin;Chen, Weidong;Yang, Woo Seok;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.204-210
    • /
    • 2013
  • Recently, many applications with grapheneoxide (GO) have been reported. But GO membrane for water treatment has not been developed. In this study we prepared polyvinylidene difluoride (PVdF) nanofiber/GO hybrid membrane (FG) for the microfiltration application. The PVdF substrate membrane was prepared by using the electrospinning method with a solution of PVdF in N,N-dimethylacetamide (DMAc) and acetone. GO sheets used in this study were prepared by modified Hummer's method. The PVdF/GO hybrid membrane was finally prepared by spraying the GO solution dispersed in ethanol on the PVdF nanofiber. The successfully prepared FG was thoroughly examined by SEM, Raman, contact angle, porometer and UTM, and water-flux was measured with designed cell (Dead-End Cell). From the contact angle results, it was found that the surface of FG membrane was reformed by hydrophilic property and the water permeability was increased about 2.5 times than that of the nascent PVdF membrane, indicating the possible alternative of the commercial MF membrane.

Effects of Method, Number of Times for Spraying and! Ventilation Condition on the Growth in Greenhouse (관수방법, 관수회수 및 송풍처리에 따른 초화류의 생장에 미치는 영향)

  • 민병로;김웅;이범선;이대원
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • On this study, a multipurpose operating system was developed to adjust a configuration of a moving path which have no connection with a form of greenhouse. To being performance the multipurpose working system, we have experienced growth quality on the plants in greenhouse. Some of the results are as follows. While watering by the hand spray. the condition of plant was generally no good. It was shown that plant height and leaf area were all high without wind during watering by the automatic spray. The effect to retrain a plant growth was high as a ventilation was strong. The diameter of a plant stem was small without ventilation condition during watering 3 times by automatic spray. The number of leaf was relatively large during 3 times by automatic spray compared to 2 times by automatic spray or hand spray. Growth of plant was fast as the times of spray were large.

Automatic Left/Right Boom Angles Control System for Upland Field (전자용 붐방제기의 붐의 좌우 경사각 자동제어)

  • 이중용;김영주;이채식
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.457-462
    • /
    • 2000
  • Boom sprayers have been known by their excellency in field efficiency worker’s safety and pest control efficacy. The boom sprayer in Korea that was developed for paddy field is not suitable for upland field of which shape is irregular and inclination is steep, due to heavy chemical tank long boom width and manual on-off control of spraying. The goal of the study was to develope a boom control system that could control boom angles of left and right boom automatically and independently corresponding to local field slope. The prime mover was selected as a cultivating tractor. Main results of this study were as follows. 1. Ultrasonic sensor whose response time was 0.1s and response angle was within $\pm$20$^{\circ}$was selected to measure distance. Voltage output of the sensor(X, Volt) had a highly significant linear relationship with the vertical distance between the sensor and ground surface(Y, mm) as follows; Y=0.0036X-0.437 2. Left and right section of the boom could be folded up by a position control device(on-off control) which could control the left and right boom independently corresponding to local slope by equalizing distances between the sensor and boom at the center and left/right boom. Most reliable DB(dead band) was experimentally selected to be 75$\Omega$(6cm). 3. At traveling velocity of 0.3~0.5m/s RMS of error between desired and achieved height was less than 4.5cm The developed boom angle controller and boom linkage system were evaluated to be successful in achieving the height control accuracy target of $\pm$10cm.

  • PDF

Enhancing resistance to major fungal pathogens of Panax ginseng, by BTH-induced systemic resistance (BTH 처리한 배배양 인삼에서 주요 진균병 저항성 증진 효과)

  • Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.99-103
    • /
    • 2016
  • In perennial ginseng plantations, the effective control of various diseases is one of the most critical factors for increasing yields. Enhancing the resistance to disease through induced systemic resistance (ISR) and anti-microbial activity of beneficial soil bacteria, is currently considered to be a potential promising approach to integrate pathogen management for sustainable agriculture. However, the effective in vitro culture systems for testing ISR in ginseng plants have been rarely reported. In this study, I have successfully developed an in vitro germ-free culture system of Panax ginseng seedling for diverse purposes. With this useful system, we also tested BTH-induced priming effects against Botrytis cinerea and Colletotrichum panacicola. Compared to the drain method for enhancing ISR effects to ginseng seedlings, the direct method of spraying leaves somewhat increased the defense activity to these major fungal pathogens. Consistently, the expression of pathogen related PgPR10 and PgCAT were greatly and rapidly enhanced in the BTH-treated ginseng seedlings by treatment with C. panacicola. Our results revealed that the in vitro culture system can be used for developing eco-friendly and versatile bio-control agents for harmful diseases in ginseng cultivation.

Development of a hydraulic power transmission system for the 3-point hitch of 50-kW narrow tractors

  • Chung, Sun-Ok;Kim, Yong-Joo;Choi, Moon-Chan;Lee, Kyu-Ho;Ha, Jong-Kyou;Kang, Tae-Kyoung;Kim, Young-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.450-458
    • /
    • 2016
  • High performance small and mid-sized tractors are required for dryland and orchard operations. A power transmission system is the most important issue for the design of high performance tractors. Many operations, such as loading and lifting, use hydraulic power. In the present study, a hydraulic power transmission system for the 3-point hitch of a 50 kW narrow tractor was developed and its performance was evaluated. First, major components were designed based on target design parameters. Target operations were spraying, weeding, and transportation. Main design parameters were determined through mathematical calculation and computer simulation. The capacity of the hydraulic cylinder was calculated taking the lifting force required for the weight of the implements into consideration. Then, a prototype was fabricated. Major components were the lifting valve, hydraulic cylinder, and 3-point hitch. Finally, performance was evaluated through laboratory tests. Tests were conducted using load weights, lift arm sensor, and lift arm height from the ground. Test results showed that the lifting force was in the range of 23.5 - 29.4 kN. This force was greater than lifting forces of competing foreign tractors by 3.9 - 4.9 kN. These results satisfied the design target value of 20.6 kN, determined by survey of advanced foreign products. The prototype will be commercialized after revision based on various field tests. Improvement of reliability should be also achieved.

Research Plan to improve Power Generation Efficiency of Photovoltaic Units using Photovoltaic Module Cooling System (태양광모듈 냉각장치를 이용한 태양광발전장치 발전효율 향상을 위한 연구방안)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.199-204
    • /
    • 2020
  • In case of the silicon solar panel being used in Korea, the production specification is designed to give maximum output at the limit of -0.5 to 0.05℃, so the output of 0.45~0.55% decreases when the temperature rises by 1℃. As a result, the photovoltaic power generation is reduced according to the surface temperature rise of the photovoltaic module due to the characteristics of the solar cell. The decrease in output reduces the efficiency of photovoltaic power generation, and if the efficiency decreases, the result is that the profit of electricity sales according to the amount of photovoltaic power generation decreases. Therefore, this paper proposes a method of spraying cooling air to the lower (or surrounding) of the photovoltaic module when it is identified above the set temperature by the temperature detection sensor. In addition, the amount of power generated is increased by utilizing the lost solar energy, and by applying cooling function through cooling air, the power generation can be further increased.