• Title/Summary/Keyword: spraying pressure

Search Result 128, Processing Time 0.027 seconds

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Spray Characteristics of Spray Nozzles Used for Greenhouse Cooling (온실 냉방용 분무노즐의 분무 특성)

  • 서원명;이종열;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.298-310
    • /
    • 1998
  • This research was carried out to find out spray characteristics of 3 types of spray nozzle to be used for greenhouse cooling. Following results were obtained from this experimental study. Water amounts sprayed with each nozzle were increased with the spraying pressure. However the increment of sprayed amount with the increase of spraying pressure were not consistent regardless of nozzle types. For the whole tested spraying pressures of nozzle-type I, II, III, the minimum droplet sizes were about 1.7~2.5$\mu$m, 1.7~2.2$\mu$m and 1.7~2.2$\mu$m, respectively, and the maximum droplet sizes were about 44~60$\mu$m, 52~71$\mu$m and 45~61$\mu$m, respectively, and the average droplet sizes were about 23~38$\mu$m, 19~24$\mu$m and 17~25$\mu$m, respectively The most appropriate spraying pressures of nozzle-type I, II, III were analyzed to be 70kgf/$\textrm{cm}^2$, 30kgf/$\textrm{cm}^2$ and 30kgf/$\textrm{cm}^2$, respectively, and their sprayed amounts were about 124mL/min, 103mL/min and 84mL/min, respectively, and average droplet sizes were 22.6$\mu$m, 21.8$\mu$m and 20.6$\mu$m, respectively. Also, with the order of nozzle-type I, II, III, droplet size distributions less than 30$\mu$m were 95.4%, 85.7% and 79.0%, respectively, and the distributions larger than 40$\mu$m were 0.2%, 1.28% and 1.67%, respectively. However most all of the droplet size were less than 50$\mu$m.

  • PDF

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method (반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도)

  • Han, Chang-Suk;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.

The Study of Reclaimer of Antiseptic Solution for Winter-sowing Prevention of a Vehicle Disinfector at Livestock Farm (축산농가 차량소독기의 동파방지를 위한 약액 회수장치에 관한 연구)

  • Kim, W.;Lee, S.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • This study was conducted to develop a reclaimer of the vehicle disinfector to be used at livestock fm. The reclaimer was mainly consisted of ball-valves, geared motors and one-chip processor, and the purpose of the system was to prevent liquid freezing as well as decrease environmental pollution of antiseptic solution. The properly spraying pressure of the vehicle disinfector was found over 1.96 MPa at 1m of the spraying range. While certain amount of the antiseptic solution remained in the injection-pipes, the spray starting time was found not making any significant effect on the remained amount of the antiseptic solution. The amounts of the antiseptic solution remained in the injection-pipes were 50 ml and 270 ml in average, respectively with and without the use of the reclaimer. The reclaimer was the most effective when the connection of the injection-pipe and sprayer line was located below the side-injection-pipe and then connected to the injection-pipe located at the bottom of vehicles.

  • PDF

A Study on Powder Fire Extinguisher Design with RULA Technique Used (RULA 평가기법을 활용한 분말소화기 디자인 연구)

  • Kang, Chaewoo;Kim, Dueknam
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • This study was intended to find methods of fire extinguishing system designs that can improve the equipment's usability. In this study, the fire suppression experiment through fire extinguishers and the data drawn through the experiment were analyzed, and then the guideline for the improvement of designs was presented. The procedure is as follows. A fire suppression experiment with the use of fire extinguishers was done by 43 average adults. The whole process of the fire suppression was videotaped, and then captured major scenes were analyzed with the use of RULA, a human engineering measurement tool. The analyzed data were divided into 4 steps, and then the guideline for design improvement was presented. The summary of the study is as follows. Step 1, Fire extinguisher distance step. To reduce overload occurring at the process of holding fire extinguishers suddenly, wheels are attached to the body of extinguishers, or pedestals are installed. Step 2, Fire extinguisher transportation step. The length of hose is extended, or fire fighting water is sprayed far, so that overload of legs occurring at the process of travel can be reduced. In addition, the weight of fire extinguisher shouldn't be over 2 kg. Step 3, Safety pin removal stage. Safety pins should be applied with button type, so that excessive posture of lower limbs and excessive twisting of wrists won't happen during safety pin removal process. Besides, safety pins should be designed for easy identification and operation. Step 4, Fire extinguishing agent spraying step. To reduce overload occurring at sudden spraying of fire fighting water, pressure should be increased gradually until high pressure. With the above study results applied to existing fire extinguisher design, it may contribute to reducing any fire damage.

The Fabrication of Thermal Sprayed Photocatalytic $TiO_{2}$ Coating on Bio-degradable Plastic

  • Bang, Hee-Seon;Bang, Han-sur
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • For the production of further functional bio-degradable plastic(polybutylene succinate:PBS) with $TiO_{2}$ as photocatalyst, which shows the decomposition of detrimental organic compound and pollutant under ultraviolet irradiation, we attempted to prepare $TiO_{2}$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated through the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photo catalytic performance and mechanical characteristics of the coatings have been investigated. The results indicated that with respect to both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio off 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_{7}$ coating exhibited largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to the much higher susceptibility to heat of 7nm agglomerated powder. In terms of photocatalytic efficiency, HVOF sprayed $P_{200}$ and $P_{30}$ coatings seem to predominate as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_{7}$ coatings didn't show the photo catalytic activity, which may result from the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Such functional PBS with new roles is expected to cosiderably contribute to the reduction of aggravated environmel problem.

  • PDF

Experimental Investigation on the Enhancement of Gas Hydrate Formation for tile Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 가스 하이드레이트 생성촉진에 대한 실험적 연구)

  • Kim Nam-Jin
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.94-101
    • /
    • 2006
  • [ $1m^3$ ] solid hydrate contains up to $200m^3$ of natural gas, depending on pressure and temperature. Such large volume of natural gas hydrate can be utilized to store and transport large quantity of natural gas in a stable condition. So, in the present investigation, experiments carried out for the formation of natural gas hydrate governed by pressure, temperature, and gas compositions, etc.. The results show that the equilibrium pressure of structure II natural gas hydrate) is approximately 65% lower and the solubility is approximately three times higher than structure I methane hydrate). Also, the subcooling conditions of the structure I and II must be above 9K and 11K in order to form hydrate rapidly regardless of gas components, but the pressure increase is more advantageous than the temperature decrease in order to increase the gas consumption. And utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

  • PDF

A Study on Development of New Repair Method by High Pressure Spray (고압 스프레이 방식 신보수공법의 개발에 관한 연구)

  • Woo, Jong-Tae;Jang, Suk-Hwan;Kim, Yong-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.279-288
    • /
    • 2003
  • This study is the development of method on repairing concrete structure for progressing the durability of reinforced concrete. This method is wet spray method which compress and conduct mortar pre-mixed with polymer powder to hose by high pressure pump and spray it on the section of concrete structure through nozzle made specially. Characters of this method are that materials are selected with the sort of structure and the cause of deterioration and macro pores are removed in repaired section by conducting with high pressure and spraying with high velocity for progressing the durability of concrete structure. This study has carried out that the minimum capacity of rebound was measured with various condition and physical properties of sample made by spray method were estimated in comparing with sample made by previous hand method. Also, properties of long-term have carried out after this method was applied on site. According to experimental study, the capacity of rebound showed below 5% and physical properties of sample made by spray method were superior to that of sample made by hand method and physical and durable properties of long-term showed excellence.

Experimental Investigation on the Enhancement of Gas Hydrate Formation for the Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 가스 하이드레이트 생성촉진에 대한 실험적 연구)

  • Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.399-402
    • /
    • 2006
  • [ $1m^3$ ] solid hydrate contains up to $200m^3$ of natural gas, depending on pressure and temperature. Such large volume of natural gas hydrate can be utilized to store and transport large quantity of natural gas in a stable condition. So, in the present investigation, experiments carried out for the formation of natural gas hydrate governed by pressure, temperature, and gas compositions, etc.. The results show that the equilibrium pressure of structure II natural gas hydrate (is approximately 65% lower and the solubility is approximately three times higher than structure I methane hydrate). Also, the subcooling conditions of the structure I and II must be above 9K and 11K in order to form hydrate rapidly regardless of gas components, but the pressure increase is more advantageous than the temperature decrease in order to increase the gas consumption. And utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

  • PDF

Minispangling of a Hot Dip Galvanized Sheet Steel by a Solution Spray Method (수용액 분사법에 의한 용융아연 도금강판의 미니스팡글 형성)

  • 김종상;전선호;박정렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 1994
  • The formation of spangles on a hot dip galvanized sheet steel by spray cooling the molten zinc coating with air, water and 2.0wt% $NH_4H_2PO_4$ solution has been studied performing laboratory experiments, and their coating properties have been evaluated. Minimized spangles were easily formed by mist spraying the solution for 1 second at the low nozzle spray pressure onto the molten zinc at 420~$422^{\circ}C$ because the solute $NH_4H_2PO_4$ in the sprayed solution imparted a highly rapid cooling effect to the coating through its endothermic de-composition reactions and because the decomposed products acted as numerous nucleation sites for the mini-mized spangles on the coating. Good surface appearances sand sound coating properties were obtained on this coating. Only regular spangles were formed on the coating by the forced convective air cooling. At the high nozzle spray pressure, zero spangles were formed on the coating by the pure water spray cooling. However, the coating had a dull and rough surface with craters sand cracks.

  • PDF