• Title/Summary/Keyword: sprayed amount

Search Result 139, Processing Time 0.023 seconds

Effect of Foliar Application of Boron on Growth and Yield in Sesame (붕소 엽면시비가 참깨가 생육 및 수량에 미치는 영향)

  • 정병관;김동관
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.441-449
    • /
    • 1996
  • This study was conducted to find the changes of growth, seed yield and several characteristics of sesame by leaf spray of boron as a solution which is likely to be lack in the soil. It is carried out at low land developed 5 years ago. The amount of 200l /l0a boron as boric acid is sprayed in each treatment at the 11 node stage of sesame in main stem. The spraying concentrations of boric acid are 0.0, 0.2 and 0.4% in each treatment of the level low plot and the ridge height 15cm plot. The result shows that leaf area is increased in proportion to the concentration of boric acid in each treatment of the level low and the ridge height 15cm, and the degree of increase of each node order is remarkable in lower leaves and is more remarkable in the treatment of level low plot. The effects of leaf spray of boric acid are not only the increase of leaf area but also dry weight, no. of capsule per plant, 1,000 grains weight of capsule setting under middle position. As a result, the amount of seed is increased in 53% in the treatment of level low. The change of major characteristics according to leaf spray of boric acid is generally great in the treatment of level low. Especially the increase of leaf area in the part of upper leaves and low leaves is effective to improve other characteristics.

  • PDF

Study on Causes and Countermeasures for the Mass Death of Fish in Reservoirs in Andong-si (안동시 저수지에서의 대량 어류 폐사에 대한 원인과 대책에 관한 연구)

  • Su Ho Bae;Sun Jin Hwang;Youn Jung Kim;Cheol Ho Jeong;Seong Yun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • This study focused on determining the specific causes and prevention methods of mass fish deaths occurred in five reservoirs (Gagugi, Neupgokgi, Danggokgi, Sagokji, and Hangokji) in Andong-si. For this purpose, a survey of agricultural land and livestock in the upper part of the reservoirs and analysis of water quality in the reservoir irrespective of whether it rains or not were conducted. We attempted to examine the changes in dissolved oxygen (DO) in the surface and bottom layers of reservoirs and changes in DO depending on the amount of livestock compost and time. Based on the above investigations, treatment plans were established to efficiently control the inflow of contaminated water into reservoirs. The rainfall and farmland areas in the upper part of the reservoir were investigated using Google and aviation data provided by the Ministry of Land, Infrastructure, and Transport. The current status of livestock farms distributed around the reservoirs was also examined because compost from these farms can flow into the reservoir when it rains. Various water quality parameters, such as phosphate phosphorus (PO4-P) and ammonium nitrogen (NH3-N), were analyzed and compared for each reservoir during the rainy season. Changes in the DO concentration and electrical conductivity (EC) were also observed at the inlet of the reservoir during raining using an automated instrument. In addition, DO was measured until the concentration reached 0 ppm in 10 min by adding livestock compost at various concentrations (0.05%, 0.1%, 0.3%, and 0.5% by wt.), where the concentration of the livestock compost represents the relative weight of rainwater. The DO concentration in the surface layer of reservoirs was 3.7 to 5.3 ppm, which is sufficient for fish survival. However, the fish could not survive at the bottom layer with DO concentration of 0.0-2.1 ppm. When the livestock compost was 0.3%, DO required 10-19 h to reach 0 ppm. Considering these results, it was confirmed that the DO in the bottom layer of the reservoir could easily change to an anaerobic state within 24 h when the livestock compost in the rainwater exceeds 0.3%. The results show that the direct cause of fish mortality is the inflow of excessive livestock compost into reservoirs during the first rainfall in spring. All the surveyed reservoirs had relatively good topographical features for the inflow of compost generated from livestock farms. This keeps the bottom layer of the reservoir free of oxygen. Therefore, to prevent fish death due to insufficient DO in the reservoir, measures should be undertaken to limit the amount of livestock compost flowing into the reservoir within 0.3%, which has been experimentally determined. As a basic countermeasure, minerals such as limestone, dolomite, and magnesia containing calcium and magnesium should be added to the compost of livestock farms around the reservoir. These minerals have excellent pollutant removal capabilities when sprayed onto the compost. In addition, measures should be taken to prevent fish death according to the characteristics of each reservoir.

Studies on the effect of phthalimido methyl-O,O-dimethyl-phosphorodithioate (Imidan) and its possible metabolites on the growth of rice plant (Phthalimido methyl-O,O-dimethyl phosphorodithioate (Imidan)과 그의 대사물질(代謝物質)이 수도(水稻) 생육(生育)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee, Sung-Hwan;Lee, Dong-Suk;Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.105-117
    • /
    • 1966
  • This experiment was conducted to investigate the effet of phthalimido-methyl-O,O-dimethyl-phosphorodithioate (Imidan) known as an acaricide and its possible metabolic products on the growth of plant, when sprayed on the leaves of rice plant. The results are summarized as follows. 1) Possible metabolic products of Imidan, the following compounds were synthesized or recrystallized for the present experiment a) N-Hydroxymethyl phthalimidem b) Phthalimide c) Phthalamidic acid d) Phthalic acid e) Anthranilic acid f) p-Amino benzoic acid g) p-Hydroxy benzoic acid h) Benzoic acid 2) Among the above materials, a), c), d), e), and Imidan were dissolved in a buffer solution respectively to be 10 and 20 p.p.m. and tested with the wheat coleoptile straight growth method. According to the results, Imidan inhibited the growth of coleoptile in both 10 and 20 p.p.m., whereas the others showed much better growth than the control, especially phthalamidic acid in 10 p.p.m. It appears that Imidan itself inhibits the coleoptile growth, whereas the metabolites derived from Imidan through various metabolisms, including hydrolysis in plant tissues show growth-regulating activity. (refer: Table 1, Fig. 1) 3) 20, 100 and 200 p.p.m. solutions of Imidall emulsion in xylene f·ere prepared. The lengths of shoot and root of rice seeds germinated on the re-respective media were measured after 12 days. The data showed that root was much more elongated in Imidan 20 p.p.m., whereas shoot in Imidan 100 p.p.m., respectively, than in the xylene control. An interesting finding was that xylene used as solvent had a tendency to inhibit seriously the root growth of rice seed. (refer: Table 2,5). 4) The emulsions of concentrations in 10, 25, 50 and 100 p.p.m's of control, Imidan, N-hydroxy methyl phthalimide, anthranilic acid, and phthalmide, respectively, were sprayed twice on the rice plant on pot. After a certain period of time lengths of rice culms were measured, showing that plots treated with Imidan and N-hydroxy methyl phthalimide exhibited much more growth than those of control and the others. 5) Loaves and stems of rice plant were sampled and extracted with dried acetone at the intervals of 3-, 5-, 7-, and 14 days after treated with Imidan 250 p.p.m. emulsion. This sample extracted with acetone was purified by means of prechromatographic purification method with acetonitrile and paperchromatographed to detect the following metabolic products. Imidan (Rf: 0.97-0,98), N-hydroxy-methyl phthalimide (Rf: 0.87) phthalimide (Rf: 0.86-0.87), phthalamidic acid (Rf: 0.13-0.14), phthalic acid (Rf: 0.02-0.03), benzoic acid (Rf: 0.42-0.43), p-amino benzoic acid or p-hydroxy benzoic acid (Rf: 0.08-0.09), and unidentified compounds (Rf: 0.73, 0.59, 0.33, 0.23. 0.07). In addition, in the early stages, such as 3- and 5 days nonhydrolyzed Imidan and its first hydrolytic product, N-hydroxymethyl phthalimide were detected in relatively large amounts, whereas in the last stages of 7- and 14 days due to further decomposition, the afore-mentioned two materials were reduced in the amount and p-hthalic, phthalamidic, benzoic, and p-Hydroxy benzoic, or p-Amino benzoic acids were detected in a considerably large amount. It is, therefore, believed that most of Imidan applied to the leaves of rice plant may be decomposed within almost 14 days. In the light of above observations it is considered that Imidan itself is not involved in plant growth regulating activity, whereas various phthaloyl derivatives produced in the course of metabolism (namelr, enzymic action) in plant tissues may have such effect.

  • PDF

Control of Pepper Anthracnose Caused by Colletotrichum acutatum using Alternate Application of Agricultural Organic Materials and Iminoctadine tris + thiram (유기농업자재와 유기합성 살균제(Iminoctadine tris + thiram) 교호살포에 따른 고추 탄저병 방제 효과)

  • Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Kim, Jung-Hyun;Kim, Seok-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.428-439
    • /
    • 2015
  • Pepper anthracnose caused by Collectotrichum acutaum has been known as one of the most damaging diseases of pepper, which has reduced not only yield but also quality of pepper produce almost every year. This study was conducted to develop control strategy against pepper anthracnose by alternate application of agricultural organic materials and chemical fungicides. The alternate application effect of agricultural organic materials and chemical fungicides for controlling pepper anthracnose were examined in vitro and in the field. First, thirteen microbial agents and twenty two agricultural organic materials were screened for antifungal activity against C. acutatum through the dual culture method and bioassay. As a result, one microbial agent (Bacillus subtilis QST-713) and three agricultural organic materials (sulfur, bordeaux mixture, marine algae extracts) were found to show high inhibition effect against C. acutatum. In the field test, when Iminoctadine tris+thiram, a chemical fungicide for controlling pepper anthracnose, was sprayed, it reduced disease incidence by 89.5%. Meanwhile Sulfur, bordeaux mixture, copper, marine algae extracts and Bacillus subtilis QST-713 showed low disease incidence at the range of 33.1~81.0%. However, when Iminoctadine tris+thiram and agricultural organic materials(bordeaux mixture, marine algae extracts) were applied to pepper fruits alternately two times at 7 days interval, there was a 81.7 and 87.1% reduction in disease, respectively. Consequently, the alternate spray of chemical fungicide (Iminoctadine tris+thiram) and agricultural organic materials (bordeaux mixture, marine algae extracts) could be recommended as a control method to reduce the using amount of chemical fungicide.

Volatilization of Sprayed Pesticides in Greenhouse using a Lysimeter (라이시미터를 이용한 시설하우스 내에 살포한 농약의 휘산 양상)

  • Kim, Danbi;Kim, Taek-Kyum;Kwon, HyeYong;Hong, Su-Myeong;Park, Byung-Jun;Lim, Sung-Jin;Lee, Hyo-Sub;Moon, Byeong-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • In cultivation environment, various pesticides are used and some of them could be volatilized into the air. This could affect farmer's health and also cause environmental pollution. This study was carried out to investigate the volatilization of pesticides, and use the reference data for preventing farmer's pesticide intoxication and securing worker safety. The experiment was conducted in a greenhouse using a lysimeter which was of $1m^2$ area and 1.5 m depth filled with upland soil. The pesticides treated in lysimeter soil were ethoprophos (5.0% GR), diazinon (34.0% EC), alachlor (43.7% EC), metolachlor (40.0% EC), chlorpyrifos (2.0% GR), pendimethalin (31.7% EC), carbaryl (50.0% WP), napropamide (50% WP), tebuconazole (25.0% WP) and imidacloprid (2.0% GR). Each pesticide was treated at a concentration of 770.5 mg based on A.I (%). The recovery of pesticide ranged from 77.4 to 99.3%. The volatilized pesticides in air were collected by personal air sampler with PUF tube at 4 l/min flow rate. In addition, temperature and humidity were measured. The collected samples were extracted using acetone in a soxhlet apparatus for 8 hours. The extracted pesticides were resoluted with acetonitrile and diluted 5 times. It was analyzed with LC-MS/MS. For 720 hours experiment, the largest vaporization amount of each pesticide in air was ethoprophos $15.24{\mu}g/m^3$, diazinon $5.14{\mu}g/m^3$, pendimethalin $2.70{\mu}g/m^3$, chlorpyrifos $1.76{\mu}g/m^3$, alachlor $1.40{\mu}g/m^3$, metolachlor $1.12{\mu}g/m^3$, carbaryl $0.27{\mu}g/m^3$, napropamide $0.22{\mu}g/m^3$, tebuconazole $0.11{\mu}g/m^3$ and imidacloprid $0.05{\mu}g/m^3$. The R value (coefficient of correlation) between volatilization and vapor pressure of pesticides is higher than 0.99. Therefore, there is high correlation between volatilization and vapor pressure of pesticides.

Fate of Acetamiprid and Imidacloprid aerially applied to the Pine Forest (항공살포에 따른 Acetamiprid와 Imidacloprid의 산림환경 중 행적)

  • Kim, Chan-Sub;Kwon, Hye-Young;Son, Kyeong-Ae;Gil, Geun-Hwan;Kim, Jin-Bae
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • Fate of acetamiprid and imidacloprid aerially sprayed to control pine wood nematode (Bursaphelenchus xylophilus) were studied in a forest of Haman area. Acetamiprid 20% SL or imidacloprid 20% DC were diluted 100 times and applied two times as rate of 50 L/ha using an aircraft of Bell 206 L helicopter. Average acetamiprid deposits on forest floor ranged from 2 to 4% of standard aerial application rate. Following to the second application, acetamiprid deposits in the pine needle ranged 1.8~8.5 mg/kg and then gradually decreased to 1.2~2.1 mg/kg after 48 days. Deposits on the plant washed off by rainfall and reached to soil surface was ca. 17% of the application rate. All of acetamiprid on the ground resided in the forest floor covering the soil surface, where acetamiprid residues were decreased to a quarter at 48 days after the second application, but they were not detected in soil beneath it. And the only low level of acetamiprid residues, 0.0003 mg/L, was detected in the reservoir nearby the experimental forest on the day of aerial application. The acetamiprid detection was presumably due to spray drift. And average imidacloprid deposits on forest floor ranged from 1 to 3% of standard aerial application rate. Following to the second application, imidacloprid deposits in the pine needle analysed very low concentration of 0.1 mg/kg, but the amount of imidacloprid in wash-off in standard and two-fold treatment were ca. 8% and 4% of the application rate, respectively. Most of imidacloprid on the ground also resided in the forest floor, where imidacloprid residues were decreased to a twentieth at 111 days after the second application, and they were detected below 0.5% of the application rate in sol beneath it. And the low level of imidacloprid, 0.0003~0.0017 mg/L, were detected in the streams in the experimental forest. It was not to the level of contamination concerns.

Relativeness between Growth and Bio-informations of Aeroponically Grown Tomato as Influenced by Spray Intervals of Nutrient Solution (양액의 분무간격에 따른 분무경재배 토마토의 생장 및 생체정보와의 관련성)

  • 정순주;소원온;지전영남;영목방부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1992
  • This experiment was carried oui to determine the relativeness between growth, yield characters and bio-informations as influenced by the spray and rest time intervals of nutrient solution. Tomato(Lycopersicon esculentum Mill.) were grown in aeroponic system on a misting schedule of continuously 60 sec, 30 sec and 10 sec at 10 min intervals with full strength Yamazaki's solution recommended for tomato production. The results obtained were as follows : 1. Leaf area was highest in the plot of 30 sec spray and 10 min rest while the forest one was the plot of 60 sec spray and 10 min rest. Growth characteristics in terms of dry weight of each organ, number of flower, number of flower setted and fruit dry weight were greater in the plot of 30 sec spray and 10 min rest than the other treatments. 2. The number of flower increased with decreasing dry weight but number of flower sorted was not significantly different among treatment except for the plot of 60 sec spray and 10 min rest. 3. Leaf dry weight and fruit dry weight were highly correlated so that 30 sec spray and 10 min rest plot which is the highest fruit dry weight showed the largest leaf area. Continuously sprayed plot reduced markedly the fruit dry weight compared with leaf area. Optimum spray and rest time of nutrient solution in the range of this experiment was determined as 30 sec spray and 10 min rest. 4. Solar radiation within glasshouse during daytime reduced severely compared with outdoor one and air temperature within greenhouse was higher than the leaf temperature of tomato plant. The changes of environmental factors, solar radiation, temperature were accompanied with the sensitive change of bio-informations of tomato leaf Especially differences of spray intervals of nutrient solution affected greatly to the changes of bio-informations : leaf water potential, stomatal resistance and leaf temperature etc. 5. The changing patterns of leaf growth as influenced by the spray and rest intervals of nutrient solution were closely related to the leaf water potential, stomatal resistance and leaf temperature. Feasibility was demonstrated that measurement of bio-information of tomato leaf as influenced by the change of environmental factors could be expected to the amount of growth and fruit yield.

  • PDF

Protective Effect of Iminoctadine tris(albesilate) and Kresoxim-methyl Fungicides to Citrus Postharvest Diseases caused by Penicillium spp. (저장 감귤의 부패에 관여하는 Penicillium spp.에 대한 Iminoctadine tris(albesilate)와 Kresoxym-methyl의 방제 효과)

  • Hyun, Jae-Wook;Lee, Seong-Chan;Ihm, Yang-Bin;Kim, Dong-Hwan;Ko, Sang-Wook;Kim, Kwang-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.2
    • /
    • pp.37-44
    • /
    • 2001
  • The biological effects of the iminoctadine tris (albesilate) and kresoxim-methyl for the protection of citrus postharvest diseases caused by penicillium spp. were assayed. In vitro tests, $EC_{50}$ values of iminoctadine tris(albesilate) were $0.01{\sim}0.02\;and\;0.01{\mu}g$ a.i./mL against mycelial growth of P. italicum and P. digitatum, respectively, but iminoctadine tris(albesilate) at $0.64{\mu}g$ a.i. /mL inhibited a little mycelial growth of unknown Penicillium sp. which produced another symptom different to blue and green mold caused by P. italicum and P. digitatum, respectively. And against germination and growth of germ tube of P. italicum and P. digitatum, $EC_{50}$ value of iminoctadine tris(albesilate) was $0.0013{\sim}0.0025{\mu}g$ a.i./mL. But spore germination of unknown Penicillium spp. was not nearly inhibited at $0.2{\mu}g$ a.i./mL. $EC_{50}$ values of kresoxim-methyl were $0.08{\sim}0.16$, 0.04 and $0.16{\mu}g$ a.i./mL against mycelial growth of P. italicum, P. digitatum and unknown Penicillium sp., respectively, and $0.04{\sim}0.08{\mu}g$ a.i./mL and $0.01{\sim}0.02{\mu}g$ a.i./mL against germination and growth of germ tube of P. italicum and unknown Penicillium sp., and P. digitatum, respectively. Iminoctadine tris(albesilate) and kresoxim-methyl were markedly effective to control the postharvest disease by 7 days spray prior to harvest. When the fruits were sprayed with iminoctadine-tris(albesilate) ($200{\mu}g$ a.i./mL) and kresoxim-methyl ($155{\mu}g$ a.i./mL) 7 days prior to harvest and subsequently stored for 90 days, the percentage of diseased fruit by Penicillium spp. was $3.6{\pm}1.8%$ in treatment of kresoxim-methyl and $5.9{\pm}1.8%$ in iminoctadine-tris(albesilate), respectively. On the other hand, tile percentage of diseased fruit was relatively high, $20.3{\pm}10.0%\;and\;19.5{\pm}9.6%$ in thiophanate-methyl ($700{\mu}g$ a.i./mL) and non-treatment, respectively. Maximum residue amount (ppm) among fruits (flesh and peel) assayed 0, 30, 60 and 90 days after storage was 0.45 and 0.10 ppm in treatment of kresoxim-methyl and iminoctadine, respectively.

  • PDF

A Study on Labor Saving in Paddy Rice Cultivation (논벼재배에 있어서의 노동력 절감에 관한 연구)

  • Young-Chul Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.11
    • /
    • pp.81-97
    • /
    • 1972
  • Experiments and investigations were done basically and practically for the purpose of labor saving in paddy rice cultivation especially on Homizil i.e. hoeing and herbicide, 1969. 8 concrete tanks were established on the open base of Keon Kuk University for comparison of percolation, dissolved oxygen and yield test of rice in the paddy plot of tank. The dimension of the bottom of each tank is square meter. Each of the 4 of the 8 tanks is 21cm in height and each of the remaining 4 tanks is 36cm. Each tank has a system that comprises 2 sets of tubes, each of which has 20 holes of 5mm in diameter scattered every side and is covered with nylon cloth taking water in the tank. One set consists of 4 P.V.C tubes. The first set is situated 8cm below the top of the tank and the second set is located at bottom layer inside the tank. The 4 tubes of each set are combined together and led to the glass tube which protects from inside to outside. And this inside-outside glass tube is connected to the small rubber tube. Also a glass tube is set 4cm below the top of the tank. Paddy loam was filled on sand in each of the tanks in the soil depth of either 15cm or 30cm. The depth of sand was 5cm in the soil depth of 15cm and 10cm in the soil depth of 30cm. (Fig. 1, 2 and 3). The paddy rice was grown in the tank. The percolation of water, the dissolved oxygen and the yield of rice were observed in the tank. And the dissolved oxygen was detected by Winkler method. A sandy paddy field of heavy percolation was selected at the field of the National Agricultural Material Inspection Center in Seoul. It was divided into 9 plots. These plots were given 3 treatments: (A) not hoeing, (B) hoeing one time and (C) hoeing two times. These treatments were replicated 3 times along the latin square design. The paddy rice was grown and sprayed with Stam F-34 in the all plots for the purpose of killing weeds before hoeing. The two types of paddy of field i.e. one for normal percolation and the other for ill drainage were selected at Iri Crop Experiment Station, Jeonla-Bukdo. Each field was divided into 24 plots for 8 treatments. They are: (A) not hoeing; (B) hoeing one time; (C) hoeing two times; (D) not hoeing but treating with herbicide, Pamcon; (E) hoeing one time and weeding two times also treating with herbicide, Pamcon; (F) hoeing two times and weeding one time a], o treating with herbicide, Pamcon; (G) hoeing two times and weeding two times also treating with herbicide, Pamcon, ; (H) usual manner. The labor hours and expenses needed for weeding in the paddy by hoeing were investigated in a farmer at Suwon and the price of herbicide and the yield of rice were taken out at Iri, Jeonla-Bukdo. The results obtained from the above experiments and investigations are as follows: 1. The relationship between percolation and dissolved oxygen shows that a very small amount of oxygen is detected in the soil water under 2cm below surface of earth in the paddy even when percolation is over 4.0cm per 24 hours (Tab. 1). 2. The relationship between percolation and yield of rice shows that the yield of rice increases in the percolation of 0cm and 1.5cm per 24 hours and decreases in the percolation of 2.5cm and 3.4cm in the plot of the 15cm ploughing depth and increases in the percolation of 1.4cm and 3.0cm and decreases in the percolation of 0cm and 4.0cm in the plot of 30cm ploughing depth (Tab. 1 and Fig. 5). 3. The yield of paddy weeded with Stam F-34 in the sandy field of heavy percolation in Seoul was 3.02 tons in the plot of not hoeing, 2.99 tons in hoeing one time and 3.05 tons in hoeing two times per hectare (Tab. 5). 4.1). 4. 1) The yield of rice per 10 ares in the field of normal percolation at Iri was 338kg in not hoeing, 379kg in hoeing one time, 383kg in hoeing two times, 413kg in spraying herbicide, Pamcon, and not hoeing, 433kg in spraying herbicide, Pamcon, and hoeing one time and weeding two times, 399kg in spraying herbicide, Pamcon, and hoeing two times and weeding one time, 420kg in spraying herbicide, Pamcon, and hoeing two times and weeding two times and 418kg in usual manner (Tab. 6-1). 2) The yield of rice per 10 ares in the field of ill drainage at Iri was 323kg in not hoeing, 363kg in hoeing one time, 342kg in hoeing two times, 388kg in spraying herbicide, Pamcon, and not hoeing, 425kg in spraying herbicide, Pamcon, and hoeing one time and weeding two times, 427kg in spraying herbicide, Pamcon, and hoeing two times and weeding one time, 449kg in spraying herbicide, Pamcon, and hoeing two times and weeding two times and 412kg in usual manner (Tab. 6-2). 5. 1) The labor hours for weeding by hoeing was 37.1 hours but 53.5 hours if hours for meal, smoking and so on are included, and the expenses including labor cost needed for weeding by hoeing in the paddy rice was 2, 346 Won per 10 ares at Suwon (Tab. 7). 2) The labor hours for weeding by spraying herbicide with hand sprayer in the paddy rice was about 5 hours per 10 ares at Suwon and the expenses for weeding by spraying herbicide in the paddy rice was 750 Won but 1130 Won if the loss by decrement of rice in the paddy field of ill drainage per 10 ares is calculated in estimation at Iri (Tab. 8). From these observations and investigations it is known that using of some kinds of herbicides Saves labor and expenses of weeding, almost without giving damages to the rice itself, in the field of normal or heavy percolation comparing usual manner of hoeing.

  • PDF