• Title/Summary/Keyword: spray thickness

Search Result 271, Processing Time 0.023 seconds

Recent Developments in Agricultural Sprays : Review

  • No, S. Y.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.44-54
    • /
    • 2002
  • A brief review of current status in the field of agricultural spray and future research challenges are presented. Researches on the pesticides sprays, pollen sprays, postharvest sprays, and biological control agent sprays among the various applications of agricultural spray were selected and reviewed. In the agrochemical sprays, the techniques to increase the deposition such as electrospray and reduce the drift such as introductions of drift retardants and of mechanical means are reviewed. The introduction of mechanical means includes low drift, air-assisted, air inclusion, shield or shroud assisted and pulse flow nozzles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying the included air in the air inclusion techniques are required. The atomization characteristics of biopesticides spray are not being elucidated and the formulations of biopesticides should be taken into account the spray characteristics of existing nozzle and sprayer. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift. Only an integrated approach involving all stakeholders such as engineers, chemists, and biologists, etc. can result in improved application of agricultural spray.

  • PDF

Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target

  • Jin, Young-Min;Jeon, Min-Gwang;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.245-252
    • /
    • 2013
  • This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the ${\alpha}$-Cu and $Cu_3Ga$ were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

Modeling of Breakup and Spray of Co-axial Swirl Injector's Outer Orifice Installed LRE combustor (액체로켓엔진에 장착되는 동축 스월형 분사기의 외측 오리피스에서의 분무 및 분열 모사)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.186-190
    • /
    • 2006
  • This study was performed to investigate the characteristics of a co-axial swirl injector. Especially to predict the initial liquid sheet thickness and spray cone angle of an outer orifice a concept of effective area was introduced from hydraulic analysis. In addition, the parameters determining the characteristics of a co-axial swirl injector were re-defined around outer orifice. The calculated results-SMD, spray cone angle, and spray thickness agreed well with the test results qualitatively.

  • PDF

Development of Automatic Recognition and Spray Control System for Reducing the Amount of Marine Coating paint (선박용 피도물 도료 사용량 절감을 위한 인식 및 스프레이 자동제어시스템 개발)

  • Jung, Young-Deuk
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.3
    • /
    • pp.23-27
    • /
    • 2019
  • The first aim of the study is to improve the productivity by uniformizing the thickness of coating and reducing quality-inspection time. The second aim is to cut down on the raw materials for coating by prevent the waste of spraying in the air during a painting process through a real-time coating-size-recognition monitering to fit the target components. To achieve the two aims, a simplified version of automatic coating control system for recognition of coating for vessels and Spray. With the sytem, following effects are expected: First, quality improvement will be achieved by uniformizing the film-thickness. Second, it will reduce the waste of coating paint by constructing the speed of the coating, the spray gun robot transfer time, and the number of DBs according to the size of the vessel. Third, as a 3D industry, it will be able to solve the difficulty of supply of labors and save up the labor costs. Therefore, in the future, further research will be needed to be applied to various products with DB design that designates the variable value, which is added for each type of pieces by comparing the difference between various types of workpieces and linear ones.

Modeling of Spray Impingement and Fuel Film Formation in HSDI Diesel Engines (고속직분식 디젤엔진에서의 분무충돌과 연료액막형성 모델링)

  • Kim, Man-Sik;Min, Gyeong-Deok;Gang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2001
  • Spray impingement and fuel film formation models were developed and incorporated into the computational fluid dynamics code. STAR-CD. The spray/wall interaction process was modeled by considering the change of behaviour with surface temperature conditions and the fuel film formation. We divided the behaviour of fuel droplets after impingement into rebound, spread and splash using the Weber number and the parameter K. The Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, Navier-Stokes and energy equations along the direction of fuel film thickness. Validation of the models was conducted using previous diesel spray experimental data and the present experimental results for the gasoline spray impingement. In all the cases, the prediction compared reasonably well with the experimental results. The spray impingement and fuel film formation models have been applied to the spray/wall impingement in high speed direct injection diesel engines.

PR Coating for Electron Beam Lithography of Cylindrical Mold and Measuring Coating Thickness of It using Measuring Tip (원통금형의 전자빔 가공을 위한 PR 코팅 및 측정 팁을 이용한 두께측정)

  • Lee, Seung-Woo;Kim, Jeong-O;Suh, Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1144-1148
    • /
    • 2012
  • Process conditions for generating nano patterns handle different process according to the pattern characteristics, and different process data according to patterns in questions. To efficiently find optimal process conditions for generating nano patterns, process data by experiment is needed consideration of the pattern characteristics concerning the equipment. In particular, coating methods of a cylindrical mold differ from it of a flat plate because of viscosity of coating materials. Also the coating thickness affects nano process and pattern line width. So coating method of coating thickness for cylindrical mold is very important on nano pattern generating. In this study, a method is proposed for coating Photo Resist through the spray in order to coat cylindrical mold and measuring the thickness of coating using measuring tip considering the size of cylindrical mold because there is no method in the existing SEM. The proposed method is applied to a real printed electronics system to verify its accuracy and efficiency.

Corrosion Behavior of TiN Ion Plated Steel Plate(III)-Effects of Ni and Ti interlayer thickness- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(III)-Ni 및 Ti 하지코팅두께의 영향-)

  • 한전건;연윤모
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.55-62
    • /
    • 1993
  • The effect of interlayer coating thickness of Ni and Ti on corrosion behavior was studied for TiN ion plat-ed steel plate. Interlayer coating was carried out in a single and bi-layer to a various thickness combination prior to final TiN coating. Corrosion behavior was evaluated by anodic polarization test in 1N H2SO4 as well as salt spray test. Ni interlayer coating was effectived in reducing corrosion current density of active region and Ti interlayer coating over Ni coating reduced the anodic corrosion current density by an order of 4 with increasing the thickness of Ti up to$ 3\mu\textrm{m}$. The improvement of corrosion resistance by Ni/Ti interlayer coating was attributed to the effective prevention of penetration of active corrosion agent resulting from the inherent corrosion resistance of Ni and Ti. Putting corrosion behavior was observed from salt spray test result for all specimens and corrosion resistance at salt atmosphere was enhanced with increasing Ni and Ti thickness, Cor-lay TiN coating was spalled out by the generation of corrosion products.

  • PDF

Spray and Atomization Technologies in Pesticides Application: A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.1-13
    • /
    • 2001
  • In the pesticides sprays, spray and atomization technologies to increase the deposition and reduce the drift are briefly reviewed. Further research is needed to deduce a measure of drift risk in sprays with different structures, velocity profiles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target. In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying included air in the air inclusion techniques are required. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift.

  • PDF

Tomographic reconstruction of Asymmetric Spray by Direct Sampling Method (직접샘플링에 의한 비대칭 분무의 토모그래피 재구성)

  • Lee, C.H.;Won, J.C.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.9-15
    • /
    • 2002
  • Convolution Fourier transformation tomographically reconstructs the spatially resolved spray injection rate from direct measuring cells. Asymmetric sprays generated from a twin-hole air shroud injector are tested with 12 equiangular projections of measurements. For each projection angle, line of sight integrated injection rate was measured at 35 positions with equal spacing measuring cells of 3 mm in width, 100 mm in length, 55 mm in depth and 0.5 mm thickness of separating wall. Interpolated data between the projection angles effectively increase the number of projections, which significantly enhances the signal-to-noise level in the reconstructed data. This modified convolution Fourier transformation scheme predicts well the structure of asymmetric sprays. Comparative study has been made between sprays with and without air shrouding. Tomograhpic reconstruction of injection rate from direct measuring cells obtained can be used to estimate the accuracy of volume fraction of spray from the LDPA tomographic reconstruction.

  • PDF

An Experimental Study on Breakup Mode of Epoxy Paint Discharging from a Fan Spray Nozzle (선형분무노즐로부터 분무되는 에폭시계 도료의 분열기구에 대한 실험적 연구)

  • Kang, S.I.;Lee, S.Y.;An, S.M.;Ryu, S.U.
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.138-145
    • /
    • 2007
  • In the present work, the breakup mechanism of highly viscous epoxy paints discharged from a fan spray nozzle was examined experimentally. The paints tested were non-Newtonian fluids, composed of epoxy resin, solid particles and other additives. The paint spray discharged from the nozzle was visualized and recorded using a digital camera with back illumination. Due to presence of the solid particles, perforation of liquid sheet was observed in most cases, even at low-Reynolds number conditions (Re < 15,000) where the aerodynamic-wave breakup mode is used to be dominant for pure liquids. However, with the increase of the particle concentration, the sheet became longer and the thickness at breakup became thinner to some extent. This is because, with higher concentration of solid particles, the stabilizing effect by the viscosity increase predominates over the destabilizing effect by perforation.

  • PDF