• Title/Summary/Keyword: spray cone angle

Search Result 86, Processing Time 0.022 seconds

Effects of Needle Response on Spray Characteristics In High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System

  • Lee Jin Wook;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1194-1205
    • /
    • 2005
  • The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector's needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector's needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle's behavior with an accelerometer and injection rate measurement employing Bosch's method was conducted. The experimental results show that the spray tip penetrations of piezo­driven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.

Analysis of Macroscopic Spray Characteristics of Diesel Injectors with Three Different Needle Driving Type in Common Rail Direct Injection System (3가지 니들구동방식별 CRDi 디젤엔진용 고압 인젝터의 거시적 분무특성 비교해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.351-358
    • /
    • 2006
  • The capability of high pressure injection with small fuel quantify at all engine operating conditions is one of the main feature in common rail fuel injection system, which is used in small and light-duty Diesel engine. The key parameter for the better atomized fuel sprays and multiple injections of this common rail fuel injection control, that can be freely selected irrespective of the engine speed and load is the mechanism controlling the needle energizing and movement in high pressure Diesel injector. In the electro-hydraulic injector, the injection nozzle is being opened and closed by movement of the injector's needle which is balanced by pressure between the nozzle seat and the needle control chamber. This study describes the macroscopic spray structure characteristics of the common rail Diesel injectors with different electric driving method i.e. the solenoid-driven and piezo-driven type. The macroscopic spray characteristics such as spray tip speed. spray tip penetration and spray cone angle were investigated by the high speed spray, which is measured by the back diffusion light illumination method with optical system for the high speed temporal photography in a constant volume chamber pressurized by nitrogen gas. As the results, the prototype piezo-driven injector system was designed and fabricated for the first time in domestic case and the effect of injector's needle response driven by different drive type was compared between the solenoid and piezo-driven injector It was found therefore. that the piezo-driven injector showed faster needle response and had better needle control capability by altering the electric input value than the solenoid-driven injector.

Study on Spray and Exhaust Emission Characteristics of DME-Biodiesel Blended Fuel in Compression Ignition Engine (압축착화기관에서 DME-바이오디젤 혼합연료의 분무 및 배기 특성에 관한 연구)

  • Cha, June-Pyo;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • The purpose of this study is to investigate experimentally the spray-atomization and combustion-emission characteristics of biodiesel-DME blended fuel. In this study, two types of test fuels pure biodiesel (BD100) and blended fuel (B-DME20) were used, and the spray and combustion characteristics of different fuel compositions were analyzed. DME constitutes 20% and biodiesel constitutes 80% (by mass fraction) of the blended fuel. The overall spray characteristics, spray tip penetration, and cone angle were evaluated using frozen spray images. In addition, the combustion and emission characteristics were analyzed on the basis of the evaluated data for a single-cylinder CI engine with common-rail injection system. It was revealed that the injection profiles of both the test fuels for a given injection pressure showed similar trends. However, the injection profiles of the blended fuel (B-DME20) indicated shorter ignition delay than those of biodiesel.

Effects of the fuel injection system on combustion in a diesel engine (디젤기관의 연소에 미치는 분사계의 영향)

  • Kwon, S. I.;Kim, W.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF

Effects of Backhole on Hyraulics of Liquid Rocket Swirl Coaxial Injector (액체로켓 동축형 스월인젝터에서 Backhole에 의한 수력학적 영향)

  • Hwang Seong-Ha;Seol Jaehoon;Jeong Wonho;Han Poongkyu;Yoon Youngbin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.287-290
    • /
    • 2002
  • 'Backhole' is an extra empty volume where is located behind the tangential entries at the rear par of the vortex chamber in the swirl coaxial injector. With the backhole, there are three major hydraulic characteristics. First, mass flow rate is increased about $15{\%}$ compared with the case without the backhole. Second, with the backhole, the center region of the injected flow has more large volume than that of without the backhole. The last, some range of the cone angle can be controlled by the backhole Experiments are conducted by using a PDPA apparatus, a mechanical patternator, stroboscopic photography and etc. With the backhole, based on cold-flow tests, the model swirl injector has some Improvement in its performance.

  • PDF

Spray Characteristics of Supersonic Liquid Jet by a Nozzle Geometry of Miniature High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 형상에 따른 초음속 액체 제트 분무 특성에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.177-180
    • /
    • 2010
  • Two-stage light gas gun, sorted with Ballistic Range System, is used to research spray characteristics of supersonic liquid jets. When high pressure tube was pressurized to the 135 bar, diaphragm films which composed with OHP film are ruptured. Expansion gases accelerate a projectile approximately 250 m/s at the exit of pump tube. And accelerated projectile collides with liquid storage part and liquid jets were injected into supersonic conditions. Supersonic liquid jets show the multiple jets and generate shockwave at the forward region of jets. Supersonic liquid jets of speed and shockwave angle have different value at each case. Supersonic liquid jets with minimum velocities are injected with M=1.53 at the geometry condition of L/d=23.8.

  • PDF