• Title/Summary/Keyword: spot welded

Search Result 267, Processing Time 0.028 seconds

A Study on the Health Evaluation in Spot Welded Zone by Using Optical Pulse and Lock-in Phase Infrared Thermography (광원 펄스와 위상잠금 적외선 열화상을 이용한 점용접부의 건전성 평가 연구)

  • Park, Hee Sang;Choi, Mang Yong;Kwon, Koo Ahn;Park, Jeong Hak;Kim, Won Tae;Lee, Bo Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • The non-destructive testing using infrared thermography is extended to a variety of industries and non-destructive testing of welds using infrared thermography is also in progress in various ways. Currently, a non-destructive testing of electrical resistance spot welds which is mainly used is Radiography Testing. This study detected area of spot welds nugget using optical-infrared thermography. In the results, it is possible for detecting defects of nugget in a short period of time using pulse-infrared thermography.

Resistance Spot Weldability of Surface Roughness Textured Galvannealed Steel Sheets (표면조도처리 된 합금화 용융아연도금강판의 저항 점 용접성)

  • Park, Sang-Soon;Kim, Ki-Hong;Kang, Nam-Hyun;Kim, Young-Seok;Rhym, Young-Mok;Choi, Yung-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.495-505
    • /
    • 2008
  • With the high proportion of zinc coated steels in body-in-white assembly, newly developed surface roughness textured galvannealed steel sheets have been introduced. In this study, zinc coated and surface roughness textured steel sheets were welded by resistance spot welding to investigate its weldability including electrode wear test. Based on the results of tensile-shear test, nugget diameter changes, and electrode tip growth test, it was clear that both surface roughness textured steels (GA-T and GA-E) showed good weldability. Also, there was no large difference in weldability and electrode wear behavior between GA-T and GA-E steels which have different surface roughness morphology. An analysis of electrode degradation showed Fe and Zn penetration through the electrode tip surface at 2400 welds reached $55{\sim}60{\mu}m$ and $75{\sim}80{\mu}m$, respectively. Therefore, there is no significant effect of surface roughness morphology on spot weldability of surface roughness textured galvannealed steel sheets. However, slight difference in thickness of alloying layers existing on electrode tip was found between GA-T and GA-E steels.

A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account (용접잔류응력을 고려한 STS301L 플러그 및 링 용접부의 피로설계 자동화에 관한 연구)

  • Baek, Seung-Yeb;Yun, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1137-1143
    • /
    • 2010
  • This paper presents a fatigue design method for plug- and ring-type gas-welded joints, which takes into account the effects of welding residual stress. To develop this method, we simulated the gas-welding process by performing nonlinear finite element analysis (FEA) To validate the FEA results, numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. To evaluate the fatigue strength of plug- and ring-type gas-welded joints influenced by welding residual stresses, the use of stress amplitude $(\sigma_a)_R$, which includes the welding residual stress in gas welds, is proposed $(\sigma_a)_R$ on the basis of a modified Goodman equation that includes the residual stress effects. Using the stress amplitude $(\sigma_a)_R$ at the hot spot point of gas weld, the relations obtained as the fatigue test results for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged to obtain the $(\sigma_a)_R-N_f$ relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using $(\sigma_a)_R$.

On the Numerical Procedure for Estimating Structural Stress of Welded Structures (수치해석을 통한 용접구조물의 구조응력 추정에 관한 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.388-395
    • /
    • 2005
  • A numerical procedure is proposed as a mesh-size insensitive structural stress definition that gives a stress state at a weld toe with relatively large mesh size. The structural stress values obtained using different finite element types, i.e. shell element and solid element, are examined for typical weld structures. The calculation procedures are performed using the balanced nodal forces and moments obtained from finite element solutions. A consistent formulation based on work equivalent argument has been implemented to transform the balanced nodal forces and moments from shell to line force and line moments at each nodal position. The mesh-insensitivity, the effect of distance $\delta$(where the stress is calculated) and the potential limitations of the structural stress method are examined for various types of weldments. Based on the results from this study, it is expected to develop a more precise stress estimation technique for fatigue strength assessment of welded structures.

Laser Weldability and Formability of Hot Rolled Steels for Hydroforming Applications (하이드로포밍용 열연 강재의 레이저 용접성 및 성형 특성)

  • Lee Won-Beam;Lee Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.19-24
    • /
    • 2004
  • The laser welding and its analysis of thin-sheet carbon steels were carried out with high power $CO_{2}$ laser. The main factor of weld quality of laser welding is gap and edge quality. This work was preformed to focus on the gap tolerance problem during laser welding. First, bead on plate welding of thin sheet was examined to investigate the effect of laser welding variables, and to obtain optimum welding condition. Butt welding was also carried out to show the effect of gap on the laser weldability of thin sheet. In order to investigate the effect of gap on formability of welded thin sheet, LDH test was caried out. At high welding speed, the partial penetration was obtained by low heat input. Otherwise, porosity was formed in the bead at low weld speed because of too much heat input. The optimum welding condition of welding was derived from bead width, penetration and hardness property. The maximum gap tolerance on laser welding was observed to be about 0.2mm. This gap size has good relationship with beam size of laser spot(about 0.3mm). The formability of welded sheet was about $80{\%}$ value of base metal and the gap size has not affected on the formability, although weld quality is dependent on the gap size.

Analysis of Residual Stresses in Weldede joints of SM570-TMC Steel (SM570-TMC 강 용접접합부의 잔류응력 해석)

  • Park, Hyeon-Chan;Lee, Jin-Hyeong;Lee, Jin-Hui;Jang, Gyeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.79-81
    • /
    • 2005
  • Bridges constructed recently are preferred to have long spans and simple structure details considering not only the function as bridge but scenic beauty, maintenance, construction term and life cycle cost, etc. Therefore, they require high performance steels like extra-thick plate steels and TMCP steels. A TMCP steel produced by themo-mechanical control process is now spot lighted due to the weldability for less carbon equivalent. It improved at strength and toughness in microstructure. Recently, the SM570-TMC steel which is a high strength TMCP steel whose tensile strength is 600MPa has been developed and applied to steel structures. But, for the application of this steel to steel structures, it is necessary to elucidate not only the material characteristics but also the mechanical characteristic of welded joints. In this study, the characteristics of residual stresses in welded joints of SM570-TMC steel were studied through the three-dimensional thermal elastic-plastic analyses on the basis of mechanical properties at high temperatures obtained from the elevated temperature tensile test.

  • PDF

Optimum Design for Frame Bracket of Electrical Panels for Improved Fatigue Strength (함정용 배전반의 피로강도 향상을 위한 프레임 브래킷의 최적설계)

  • Kim, Myung-Hyun;Choi, Jae-Young;Kang, Sung-Won;Chung, Ji-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.206-212
    • /
    • 2006
  • Structural reliability of electrical panels installed in naval vessels is of critical importance from structural performance viewpoint. The electrical panels may be exposed to vibration and fatigue loadings from internal and external sources as well as wave loadings which result into a crack and fracture due to the decrease of fatigue strength. It is also well known that welded joints including brackets within steel structures .such as vessels and bridges are vulnerable against such repeated loadings. This study introduces a preliminary result of the optimized shape of frame bracket consisting of electrical panels in navel vessels against fatigue loading and their fatigue life at brackets of electrical panels by means of hot spot stress and structural stress methods.

Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs

  • Heng, Junlin;Zheng, Kaifeng;Kaewunruen, Sakdirat;Zhu, Jin;Baniotopoulos, Charalampos
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.799-813
    • /
    • 2020
  • Fatigue cracks of rib-to-deck (RD) joints have been frequently observed in the orthotropic steel decks (OSD) using conventional U-ribs (CU). Thickened edge U-rib (TEU) is proposed to enhance the fatigue strength of RD joints, and its effectiveness has been proved through fatigue tests. In-depth full-scale tests are further carried out to investigate both the fatigue strength and fractography of RD joints. Based on the test result, the mean fatigue strength of TEU specimens is 21% and 17% higher than that of CU specimens in terms of nominal and hot spot stress, respectively. Meanwhile, the development of fatigue cracks has been measured using the strain gauges installed along the welded joint. It is found that such the crack remains almost in semi-elliptical shape during the initiation and propagation. For the further application of TEUs, the design curve under the specific survival rate is required for the RD joints using TEUs. Since the fatigue strength of welded joints is highly scattered, the design curves derived by using the limited test data only are not reliable enough to be used as the reference. On this ground, an experiment-numerical hybrid approach is employed. Basing on the fatigue test, a probabilistic assessment model has been established to predict the fatigue strength of RD joints. In the model, the randomness in material properties, initial flaws and local geometries has been taken into consideration. The multiple-site initiation and coalescence of fatigue cracks are also considered to improve the accuracy. Validation of the model has been rigorously conducted using the test data. By extending the validated model, large-scale databases of fatigue life could be generated in a short period. Through the regression analysis on the generated database, design curves of the RD joint have been derived under the 95% survival rate. As the result, FAT 85 and FAT 110 curves with the power index m of 2.89 are recommended in the fatigue evaluation on the RD joint using TEUs in terms of nominal stress and hot spot stress respectively. Meanwhile, FAT 70 and FAT 90 curves with m of 2.92 are suggested in the evaluation on the RD joint using CUs in terms of nominal stress and hot spot stress, respectively.

A Study on the Fatigue Strength Improvement using Weld Toe Burr Grinding (용접토우부의 그라인딩에 의한 피로강도 증대효과에 대한 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Choi, Jae-Young;Kim, Wha-Soo;Paik, Young-Min
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.42-47
    • /
    • 2006
  • While it is known that the weld toe grinding method may give 3.4 times of fatigue strength improvement, this improvement may significantly vary according to weld bead shapes and loading modes. Although tremendous interest have been given in improving fatigue strength improvement for ship structures, quantitative results are yet in need. In this context, a series of fatigue tests is carried out for a type of test specimen that are typically found in ship structures. Weld burr grinding is carried out using a electric grinder in order to remove surface defects and improve the weld bead profile. The test results are compared with the same type of test specimen without applying the fatigue improvement technique in order to obtain a quantitative measure of the fatigue strength improvement. On the other hand, both hot spot stress and structural stress methods are employed to compare the effectiveness of the two methods in evaluating the fatigue strength improvement of welded structures.

A Tolerance Analysis Method for Spot-welded Deformable Auto Body Parts (점용접되는 차체 부품의 공차 해석 기법)

  • So, Hyun-Chul;Kim, Kuk-Saeng;Yim, Hyun-June;Jee, Hae-Seong;Park, Bong-Jun;Yoo, In-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.23-31
    • /
    • 2006
  • Tolerance analysis of auto body requires the consideration of its compliance because of potentially significant deformation during the spot-weld assembly process. In this paper, a relatively recent method for such analyses is briefly introduced as one can find in the literature. In this method, it is important to take into account of the covariance between the sources of variation as they are closely located, which is the case in most auto body assembly. However, it is often impossible to know such covariance, for example, when a new car is being developed. Therefore, a mechanics-based method is proposed in this paper to estimate the covariance among the sources of variation by finite element analyses and simple statistical computations. The proposed method is illustrated by applying it to a three-dimensional model of real front wheel housing.