• Title/Summary/Keyword: spore trap

Search Result 7, Processing Time 0.023 seconds

Epidemiological Studies of Rice Blast Disease Caused by Pyricularia oryzae Cavara I. Measurement of the Amount of Spores Released from a Single Lesion (벼 도열병의 역학적 연구 I. 단일병반으로부터 포자이탈량 조사)

  • Kim Chang Kyu;Yoshino Reiichi
    • Korean Journal Plant Pathology
    • /
    • v.3 no.2
    • /
    • pp.120-123
    • /
    • 1987
  • Four types of spore trap (Kim's original, improved Kim's original, Yoshino's original and mixed type of Kim's and Yoshino's original) were evaluated for their efficacy to "estimate the amount of spores released from leaf blast lesions under the natural conditions. It was found that all four types had one or two defects in allowance for adequate sporulation/release, spore catch or spore counting. Thus, an improved type of spore trap was devised considering that it could cover the defects mentioned above. As a result, newly developed spore trap was quite satisfactory in above mentioned aspects and it could be used for pursuit of spore release phase under the natural conditions.

  • PDF

Effect of Fertilizers and Neem Cake Amendment in Soil on Spore Germination of Arthrobotrys dactyloides

  • Kumar, D.;Singh, K.P.;Jaiswal, R.K.
    • Mycobiology
    • /
    • v.33 no.4
    • /
    • pp.194-199
    • /
    • 2005
  • Application of fertilizers such as urea, diammonium phosphate (DAP) and muriate of potash in soil adversely affected the spore germination of Arthrobotrys dactyloides. Amendment of soil with urea at the concentrations of 1.0%, 0.5% and 0.1 % completely inhibited spore germination and direct trap formation on the conidium, whereas muriate of potash delayed and reduced the spore germination even at the lowest concentration. DAP also inhibited spore germination at 1.0% concentration, while at lower concentration the percentage of spore germination was reduced. Application of neem cake at the concentration of 0.5% also inhibited spore germination after 24 h of amendment. The inhibitory effect of neem cake was reduced after 15 days of amendment, while after 30 days after amendment the inhibitory effect was completely lost and the spore germinated by direct trap as in unamended soil. Nematodes were not attracted to ungerminated spores after 24 h of amendment. After 15 days of amendment nematodes were attracted to agar blocks containing fewer germinated spores after 24 h of incubation but after 48 h of incubation large number of nematodes were attracted and trapped by the germinated spores with direct traps. After 30 days of amendment, larger number of nematodes were attracted and trapped by direct traps.

Trap Culture Technique for Propagation of Arbuscular Mycorrhizal Fungi using Different Host Plants

  • Selvakumar, Gopal;Kim, Kiyoon;Walitang, Denver;Chanratana, Mak;Kang, Yeongyeong;Chung, Bongnam;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.608-613
    • /
    • 2016
  • Arbuscular mycorrhizal fungi (AMF) spore propagation and long term maintenance is still a complicated technique for farmers. The use of AMF for their ability to promote plant growth and protect plants against pathogen attack and environmental stresses demands AMF propagation for large scale application. This study aimed to propagate AMF spores by trap culture technique and assess their ability to propagate with different host plants in a continuous plant cycle. Mycorrhizal inoculation by trap culture in maize resulted in longer shoots and roots than sudangrass plants. Increase in dry weight with higher percentage also was observed for maize plants. After first and second plant cycle, maize plants had the higher percentage of mycorrhizal response in terms of colonization and arbuscules than sudangrass. Maximum in spore count also achieved in the pots of maize plants. The results show that maize plant is more suitable host plant for AMF spore propagation and trap culture technique can be used effectively to maintain the AMF culture for long time.

Temporal Dynamics of Botryosphaeria dothidea Spore Dispersal in Apple Orchards and Related Climatological Factors (사과원에서 Botryosphaeria dothidea 포자 방출의 경시적 변화 및 관련된 기상요소)

  • 김기우;박은우;김성봉;윤진일
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.230-237
    • /
    • 1995
  • Airborne and waterborne ascospores and conidia of Botryosphaeria dothidea were collected in apple orchards at Suwon and Chunan in 1992 through 1994. Both waterborne and airborne spores were first detected in mid April to early May. Thereafter, spores were abundant in early June to late August and present until early December. Rainwater collections contained much more conidia than ascospores during the apple growing seasons. Airborne ascospores catches, which were also detected on humid days without measurable rainfall, were much more than airborne conidia catches. High amounts of ascospores were detected in early times of apple growing season, whereas most conidia catches occurred in later times of the season. The number of waterborne conidia and airborne ascospores was positively correlated with mean daily maximum, minimum, and average air temperatures during the trapping periods (p=0.01). However, no significant correlation was found between the number of spores and the total precipitation during the trapping periods.

  • PDF

Characteristics study of biological materials using pyrolysis-mass spectrometry (열분해 질량분석법을 이용한 생물학 물질의 특성 연구)

  • Choi Sun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.110-121
    • /
    • 2004
  • Pyrolysis-mass spectrometry, incorporating an in situ thermal hydrolysis and methylation(THM) step, has been used to study biological materials for bacteria, toxin and virus. Newly developed pyrolyzer was used to decompose biological materials, and tetramethylammonium hydroxide(TMAH) was used as a methylation reagent. Chemical ionization(CI) using ethanol and ion trap mass spectrometer(ITMS) were used to ionize and analyze of pyrolysis components, respectively. Analytical characteristics of bacteria (including spore), virus and toxin were analyzed. Also acquisition and interpretation of mass spectra as biomarkers for classification/identification of biological material s were explained.

Sporulation of Pyricularia grisea at Different Growth Stages of Rice in the Field

  • Kim, Chang-Kyu;Reiich Yoshino
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.147-150
    • /
    • 2000
  • Sporulation patterns of rice blast fungus were studied at relatively later stages of leaf blast and neck blast seasons in Icheon, Korea. This experiment was done by detaching lesion-bearing leaves and panicle bases. The number of conidia remaining on the leaf blast lesions of different cultivars from Jul 20 to Jul 23 ranged from 3,640 to 82,740 spores. More conidia were observed on the adaxial surface because they were released from abaxial surface. After heading, sporulation was observed from the lesions on the flag leaves but the number of spores was less than in the late July. Detached panicle bases or uppermost internodes infected by Pyricularia grisea produced abundant amount of conidia. Among these panicle bases, 30.1 mm size lesion recorded the highest count of 244,560 spores. When we compared the sporulation amount using the KY-type spore trap, more conidia were recorded from intact lesions than from the lesions which removed conidia and conidiophore The ratio of conidia release against total sporulation ranged from 20.5%-25.0% for leaf blast and 8.2%-25.3% in the neck blast. Effective inoculum potential was also discussed.

  • PDF

Relationship between Pollen Concentration and Meteorological Condition in an Urban Area (도시지역 공중화분 농도와 기상조건과의 관계)

  • Oh, In-Bo;Kim, Yangho;Choi, Kee-Ryong;Lee, Ji Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.780-788
    • /
    • 2013
  • This study attempted to determine important meteorological parameters related to airborne pollen concentrations in urban areas. Hourly pollen measurement data were prepared from a regular sampling with a volumetric Burkard spore trap at a site in the Ulsan city, during the spring season (March~May) of 2011. Results showed that the daily mean and maximum concentrations for total pollen counts during the spring season were statistically significantly correlated with both air temperature and wind speed; daily mean pollen concentration was the most highly related to daily maximum temperature (r=0.567, p<0.001). It was also identified that pollen concentration has a stronger relationship with wind speed at the rural site than at the urban one, which confirms that strong wind conditions over the pollen sources area can be favorable for pollen dispersal, resulting in increases in airborne pollen concentrations downwind. From the results of an oak-pollen episode analysis, it was found that there was a significant relationship between hourly variation of oak pollen concentrations and dynamic meteorological factors, such as wind and mixing height (representing the boundary layer depth); especially, a strong southwestern wind and elevated mixing height was associated with high nocturnal concentrations of oak pollen. This study suggests that temperature, wind, and mixing height can be important considerations in explaining the pollen concentration variations. Additional examination of complex interactions of multiple meteorological parameters affecting pollen behavior should be carried out in order to better understand and predict the temporal and spatial pollen distribution in urban areas.