• Title/Summary/Keyword: sporadic group: triangle group

Search Result 2, Processing Time 0.014 seconds

GENERATING PAIRS FOR THE HELD GROUP He

  • Ashrafi, Ali-Reza
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.167-174
    • /
    • 2002
  • A group G is said to be (l, n, n)-generated if it is a quotient group of the triangle group T(p,q,r)=(x,y,z|x$\^$p/=y$\^$q/=z$\^$r/=xyz=1). In [15], the question of finding all triples (l, m, n) such that non-abelian finite simple groups are (l , m, n)-generated was posed. In this paper we partially answer this question for the sporadic group He. We continue the study of (p, q, r) -generations of the sporadic simple groups, where p, q, r are distinct primes. The problem is resolved for the Held group He.

GENERATING PAIRS FOR THE SPORADIC GROUP Ru

  • Darafsheh, M.R.;Ashrafi, A.R.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.143-154
    • /
    • 2003
  • A finite group G is called (l, m, n)-generated, if it is a quotient group of the triangle group T(l, m, n) = 〈$\chi$, y, z│$\chi$$\^$l/ = y$\^$m/ = z$^n$ = $\chi$yz = 1〉. In [19], the question of finding all triples (l, m, n) such that non-abelian finite simple group are (l, m, n)-generated was posed. In this paper we partially answer this question for the sporadic group Ru. In fact, we prove that if p, q and r are prime divisors of │Ru│, where p < q < r and$.$(p, q) $\neq$ (2, 3), then Ru is (p, q, r)-generated.