GENERATING PAIRS FOR THE SPORADIC GROUP Ru

  • Darafsheh, M.R. (Department of Mathematics and Computer Science, University of Tehran) ;
  • Ashrafi, A.R. (Department of Mathematics and Faculty of Science, University of Kashan)
  • Published : 2003.05.01

Abstract

A finite group G is called (l, m, n)-generated, if it is a quotient group of the triangle group T(l, m, n) = 〈$\chi$, y, z│$\chi$$\^$l/ = y$\^$m/ = z$^n$ = $\chi$yz = 1〉. In [19], the question of finding all triples (l, m, n) such that non-abelian finite simple group are (l, m, n)-generated was posed. In this paper we partially answer this question for the sporadic group Ru. In fact, we prove that if p, q and r are prime divisors of │Ru│, where p < q < r and$.$(p, q) $\neq$ (2, 3), then Ru is (p, q, r)-generated.

Keywords

References

  1. Sporadic grups M. Aschbacher
  2. to be submitted Generating Rairs the Thompson Group Th A. R. Ashrafi
  3. J. Appl. Math. & computing v.10 Generating Pairs for the Held Group He A. R. Ashrafi
  4. Bull. Austral. Math. soc. v.30 Some results on quotients of triangle groups M. D. E. Conder
  5. Proc. Amer. Math. Soc. v.116 The symmetric genus of sporadic groups M. C. E. Conder;R. A. Wilson;A. J. Wolder
  6. Atlas of Finite Groups J. H. Conway;R. T. Curtis;S. P. Norton;R. A. Parker;R. A. Wilson
  7. Kumamoto J. Math v.13 (2,p,q)-Generation of the Conway group Co₁ M. R. Darafsheh;A. r. Ashrafi
  8. Kumamoto J. Math. v.14 (p,q,r)-Generations of the Conway group Co₁, for odd p M. R. Darafsheh;A. R. Ashrafi;G. A. Moghani
  9. to appear in Kumamoto J. Math. (p, q, r)-Generations and nX-Complementary Generations of the Sporadic Group Ly M. R. Darafsheh;A. R. Ashrafi;G. A. Moghani
  10. to appear in LMS lecture note serries (p, q, r)-Generations of the sporadic group O'N M. R. Darafsheh;A. R. Ashrafi;G. A. Moghani
  11. to be submitted nX-Complementary generations of the Conway group Co₁ M. R. Darafsheh;G. A. Moghani;A. R. Ashrafi
  12. to appear in Southeast Asian Bull. of Math (p, q, r)-Generations and nX-complementary generations of the sporadic group O'N M. R. Darafsheh;A. R. Ashrafi;G. A. Moghani
  13. to appear in Italian J. Pure and Appl. Math nX-Complementary generations of the sporadic group He M. R. Darafsheh;G. A. Moghani
  14. J. Algbra v.188 (p, q, r)-Generations of the smallest Conway group Co₃ S. Ganief;J. Moori
  15. J. Group Theory v.1 Generating pairs for the Conway groups Co₂and Co₃ S. Ganief;J. Moori
  16. J. Algebra v.212 2-Generations of the Forth Janko Group J₄ S. Ganief;J. Moori
  17. J. Algebra v.188 (p, q, r)-Generations and nX-complementary generations of the sporadic Groups HS;and McL S. Ganief;J. Moori
  18. Korean J. Comput. & Appl. Math. v.8 no.3 A new characterization of Ap where p and p-2 are prime A. iranmanesh;S. H. Alavi
  19. Nova J. Algebra v.212 (p, q, r)-Generations for the Janko groups J₁ and J₂ J. Moori
  20. Algebra v.2 no.11 (2, 3, p)-Generations for the Fischer group F₂₂ J. Moori
  21. Lehrstuhl De fur Math-ematik, RWTH, Aachen GAP, Groups, Algorithms and Programming M. Schonert (et al)
  22. Comm. Algebra v.18 Representing $M_11, M_12, M_22 and M_23$ on surfaces of least genus A. J. Woldar
  23. J. Alg v.144 Sporadic simple groups which are Hurwitx A. J. Woldar
  24. Comm. Alg v.22 no.2 3/2-Generation of the sporadic simple groups A. J. Woldar
  25. Illinois Math. J. v.3 no.33 On Hurwitz generation and genus actions of sporadic groups A. J. Woldar