• Title/Summary/Keyword: Rudvalis group

Search Result 1, Processing Time 0.019 seconds

GENERATING PAIRS FOR THE SPORADIC GROUP Ru

  • Darafsheh, M.R.;Ashrafi, A.R.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.143-154
    • /
    • 2003
  • A finite group G is called (l, m, n)-generated, if it is a quotient group of the triangle group T(l, m, n) = 〈$\chi$, y, z│$\chi$$\^$l/ = y$\^$m/ = z$^n$ = $\chi$yz = 1〉. In [19], the question of finding all triples (l, m, n) such that non-abelian finite simple group are (l, m, n)-generated was posed. In this paper we partially answer this question for the sporadic group Ru. In fact, we prove that if p, q and r are prime divisors of │Ru│, where p < q < r and$.$(p, q) $\neq$ (2, 3), then Ru is (p, q, r)-generated.