• Title/Summary/Keyword: split-tensile strength

Search Result 140, Processing Time 0.019 seconds

Structural Tensile Capacities of Split-Tee Connection with High Strength Bolts (고력볼트 Split Tee 접합부의 인장내력)

  • Choi, Hye Kyoung;Choi, Sung Mo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.541-549
    • /
    • 2003
  • Split-tee connection with High Strength Bolts is normally used in low and middle rise buildings in Europe because the structural efficiency and installation work of connections are excellent. However, the domestic situation is different from that in Europe. The analysis and the design for the T-split connection are complicated, because the structural behavior often T-split connection with High Strength Bolt is governed by so many parameters, i.e., prying action, bolt's tension, shear failure and plastic failure of flange plates. Many researches regarding the structural behavior of the split-tee connection have been undertaken in other parts of the world, such as the, Americas, Japan and Europe, but in the domestic context, this is a pioneering study. Therefore, the purpose of this paper is to supply basic data for the design of T-split connection, and to verify the structural characteristics that define reactions to prying action, based on an experimental study.

Preparation and Physical Properties of Polycaprolactone Diol-based Water-based Polyurethanes for Split Leather Coatings (스플릿 레더 코팅을 위한 폴리 카프로 락톤 디올 기반 수성 폴리 우레탄의 제조 및 물리적 특성)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, isophorone diisocyanate (IPDI) and dimethylolbutanoic acid (DMBA) were used on the basis of poly caprolactone diol (3M, 3.5M, 4M, 4.5M) for the synthesis of water-based polyurethanes for coating on skin layers of leather. Tensile strength, elongation, and adhesive strength of the prepared samples were measured. As a result of measuring the tensile strength, the tensile strength was found to be 4.09 kgf / ㎟ when 3 moles were applied, and 1.071 kgf / ㎟ when 4.5 moles were applied. Elongation was 366 % when 3 moles of PCL were applied, and 709 % at 4.5 moles. Adhesive strength was 2.887 kgf / cm when 3 moles of PCL was applied and 0.998 kgf / cm when 4.5 moles were applied.

The Comparative Analysis on Mechanical Property Test of Carbon Nanotube-based Shock Absorbers (탄소나노튜브를 기반으로 하는 충격흡수제의 물리적 특성 비교분석)

  • Kim, Jong-Woo;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.237-242
    • /
    • 2012
  • The purpose of this study was (a) to develop carbon nanotube-based shock absorbers for reducing potentially harmful impact forces and excessive foot pronation, and (b) to briefly determine how the effects of carbon nanotube-based shock absorbers on biomechanical variance during drop landing. A university student(age: 24.0 yrs, height: 176.2 cm, weight: 679.5 N) who has no musculoskeletal disorder was recruited as the subject. Hardness, specific gravity, tensile strength, elongation, 100% modulus, tear strength, split tear strength, compression set, resilience, vertical GRF, and loading rate were determined for each material. For each dependent variable, a descriptive statistics was used for different conditions. The property test results showed that tensile strength, tear strength, split tear strength, compression set, and resilience in carbon nanotube-based shock absorbers were greater than general Ethylene Vinyl Acetate(EVA). These indicated that resistance against variable strength in developed carbon nanotube-based shock absorbers were greater than general EVA. In vertical GRF of CNTC was less than those of EVA during drop landing and loading rate of CNTC was greater than EVA. It seems that the use of CNT can be a effective way of reducing and controlling shock from impact.

Experimental Study on Deformation and Failure Behavior of Limestones under Dynamic Loadings (동적하중 하에서 석회암의 변형 및 파괴거동에 관한 실험적 연구)

  • Kang, Myoung-Soo;Kang, Hyeong-Min;Kim, Seung-Kon;Cheon, Dae-Sung;Kaneko, Katsuhiko;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2012
  • Information on the deformation behavior and fracture strength of rocks subjected to dynamic loadings is important to stability analyses of underground openings underground vibration due to rock blasts, earthquakes and rock bursts. In this study, Split Hopkinson Pressure Bar (SHPB) system was applied to estimate dynamic compressive and tensile fracture strengths of limestone and also examine deformation behavior of limestones under dynamic loadings. A micro-focus X-ray CT scanner was used to observe non-destructively inside the impacted limestone specimens. From the dynamic tests, it was revealed that the limestone have over 140MPa dynamic compressive strength and the strain-rate dependency of the strength. Dynamic Brazilian tensile strength of the limestone exceeds 21MPa and shows over 3 times static Brazilian tensile strength.

Review study towards effect of Silica Fume on the fresh and hardened properties of concrete

  • Imam, Ashhad;Kumar, Vikash;Srivastava, Vikas
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.145-157
    • /
    • 2018
  • This paper presents a review on the use of Silica Fume (SF) as a mineral admixture in the concrete. Distinctive outcome from several researches have been demonstrated here, particularly emphasizing on the fresh and hardened properties of concrete when blended with Silica Fume (Micro-silica or Nano-silica). The results showed a substantial enhancement in the mechanical properties of concrete when replaced with SF. The review also presented a brief idea of percentage replacement of SF in case of normal and high-strength concrete. A decreasing trend in workability (slump value) has been identified when there is a increase in percentage replacement of SF. It can be concluded that the optimize percentage of replacement with SF lies in the range of 8-10% particularly for compressive strength. However the variation of blending goes up to 12-15% in case of split tensile and flexure strength of concrete. The study also demonstrates the effect of silica fume on durability parameters like water absorption, permeability, sulphate attack and chloride attack.

Engineering properties of steel fibre reinforced geopolymer concrete

  • Ganesan, N.;Indira, P.V.;Santhakumar, Anjana
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.305-318
    • /
    • 2013
  • Engineering properties such as compressive strength, splitting tensile strength, modulus of rupture, modulus of elasticity and Poisson's ratio of geopolymer concrete (GPC) and steel fibre reinforced geopolymer concrete (SFRGPC) have been obtained from standard tests and compared. A total of 15 specimens were tested for determining each property. The grade of concrete used was M 40. The percentages of steel fibres considered include 0.25%, 0.5%, 0.75% and 1%. In general, the addition of fibres improved the mechanical properties of both GPC and SFRGPC. However the increase was found to be nominal in the case of compressive strength (8.51%), significant in the case of splitting tensile strength (61.63%), modulus of rupture (24%), modulus of elasticity (64.92%) and Poisson's ratio (50%) at 1% volume fraction of fibres. An attempt was made to obtain the relation between the various engineering properties with the percentage of fibres added.

Mechanical and Durability Characteristics of Amorphous Metallic Fiber Reinforced Self-Healing Mortar (비정질금속섬유 보강 자기치유 모르타르의 역학 및 내구특성)

  • Yoon, Joo-Ho;Lee, Min-Wook;Kim, Chae-Young;Lee, Jae-In;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.27-28
    • /
    • 2023
  • This study compared and analyzed the fluidity, compressive strength, and carbonation resistacne of amorphous metal fiber reinforced mortar according to the PCC mixing ratio as part of a study to improve the self-healing performance and tensile performance of concrete structures.

  • PDF

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).

High-Strain Rate Tensile Behavior of Pure Aluminum Single and Multi-Crystalline Materials with a Tensile Split Hopkinson Bar (인장형 홉킨슨 바 장치를 이용한 알루미늄 단결정 및 멀티결정재의 동적 실험)

  • Ha, Sangyul;Jang, Jin Hee;Yoon, Hyo Jun;Kim, KiTae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • In this study, we modified the conventional tensile split Hopkinson bar(TSHB) apparatus typically used for the high strength steel to evaluate the tensile deformation behavior of soft metallic sheet materials under high strain rates. Stress-strain curves of high purity single and multi-crystalline materials were obtained using this experimental procedure. Grain morphology and initial crystallographic orientation were characterized by EBSD(Electron Backscattered Diffraction) method measured in a FE-SEM(Field emission-scanning electron microscopy). The fractured surfaces were observed by using optical microscopy. The relationship between plastic deformation of aluminum crystalline materials under high-strain rates and the initial microstructure and the crystallographic orientations has been addressed.