• Title/Summary/Keyword: split-tensile strength

Search Result 137, Processing Time 0.024 seconds

The Relationship between Splitting Tensile Strength and Compressive Strength of Fiber Reinforced Concretes

  • Choi, Yeol;Kang, Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2003
  • This paper presents experimental and analytical results of glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PERC) to investigate the relationship between tensile strength and compressive strength based on the split cylinder test (ASTM C496) and compressive strength test (ASTM C39). Experimental studies were performed on cylinder specimens having 150 mm in diameter an 300 mm in height with two different fiber contents (1.0 and 1.5% by volume fraction) at ages of 7, 28 and 90 days. A total of 90 cylinder specimens were tested including specimens made of the plain concrete. The experimental data have been used to obtain the relationship between tensile strength and compressive strength. A representative equation is proposed for the relationship between tensile strength and compressive strength of fiber-reinforced concrete (FRC) including glass and polypropylene fibers. There is a good agreement between the average experimental results and those calculated values from the proposed equation.

Guided wave analysis of air-coupled impact-echo in concrete slab investigation on the use of waste tyre crumb rubber in concrete paving blocks

  • Murugan, R. Bharathi;Natarajan, C.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.311-318
    • /
    • 2017
  • This paper investigates the utilization of waste tyre crumb rubber as the fine aggregate in precast concrete Paving block (PCPB). PCPB's are generally preferred for city roads, pedestrian crosswalk, parking lots and bus terminals. The main aim of this paper is to evaluate the mechanical properties of wet cast PCPB containing waste tyre crumb rubber. The mechanical properties were investigated using a density, compressive strength, split tensile strength and flexural strength tests at 7, 28 56 days according to the IS 15688:2006 and EN1338. The wet cast method was followed for producing PCPB samples. The fine aggregate (river sand) was replaced with waste tyre crumb in percentage of 5%, 10%, 15%, 20% and 25% by volume. All the test results were compared with the conventional PCPB (Without rubber). The test results indicate its feasibility for incorporating waste tyre crumb rubber in the production of PCPB by the wet cast method.

Experimental investigation for partial replacement of fine aggregates in concrete with sandstone

  • Chandar, K. Ram;Gayana, B.C.;Sainath, V.
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.243-261
    • /
    • 2016
  • This research study focuses on utilizing sandstone which is overburden waste rock in coal mines to use in concrete as a replacement of fine aggregate. Physical properties of sandstone like water absorption, moisture content, fineness modulus etc., were found to be similar to conventional fine aggregate. Scanning Electron Microscope (SEM) analysis was carried out for analysing elemental composition of sandstone. There was no sulphur content in sandstone which is a good sign to carry the replacement. Fine aggregate was replaced with sandstone at 25%, 50%, 75% and 100% by volume and moulds of concrete cubes and cylinders were prepared. Compressive strength of concrete cubes was tested after 3, 7 and 28 days and split tensile & flexural strength was determined after 28 days. The strength was found to be increasing marginally with increase in sandstone content. Fine aggregate that was replaced by 100% sandstone gave highest strength among all the replacements for the compressive, split tensile and flexural strengths. Though increase in strength was marginal, still sandstone can be an effective replacement for sand in order to save the natural resource and utilize the waste sandstone.

Evaluation of Tensile Properties Using Filament Wound Ring Specimens (필라멘트 와인딩된 링시편을 이용한 인장특성 평가)

  • 윤성호;김천곤;조원만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1479-1489
    • /
    • 1995
  • In this study, tensile strength and modulus were evaluated for a filament wound ring specimen by split disk test and compared with the theoretical values obtained by the rule of mixtures. The circumferentially wound ring specimens were prepared from 4 types of material systems. The results showed that the measured strengths of the composite systems were considerably lower than the theoretical values due to the local bending stresses around the split disk edges. for the measurement of elastic moduli of the filament wound ring specimens, the effect of friction on the strain of the ring must be taken into account. But the effect of friction between the split disk fixture and the ring specimen can be eliminated by averaging the moduli for loading and unloading state with maintaining the same crosshead rates. The measured elastic moduli of ring specimens showed very good agreement with the theoretical values.

Mechanical Properties of Polyurethane Foam Prepared from Prepolymer with Resin Premix (Prepolymer와 Resin Premix로 부터 제조된 Polyurethane Foam의 기계적 성질)

  • Kim, Tae Sung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.241-248
    • /
    • 2013
  • Polyester type polyurethane foam has low hydrolysis resistance. It was overcome with addition of acrylic polyol by quasi prepolymer method. Tensile strength and hardness of polyurethane foam contained acrylic polyol was increased with increasing of acrylic polyol contents. But split tear strength and tear strength was slightly changed. Hydrolysis resistance of polyurethane foam was measured by loss % of tensile strength. It was improved with increasing of acrylic polyol contents from 25.5g to 102g.

Estimation of Dynamic Brazilian Tensile Strengths of Rocks Using Split Hopkinson Pressure Bar (SHPB) System (스플릿 홉킨슨 압력봉 실험장비를 이용한 암석의 동적 압열인장강도 평가에 관한 연구)

  • Yang, Jung-Hun;Ahn, Jung-Lyang;Kim, Seung-Kon;Song, Young-Su;Sung, Nak-Hoon;Lee, Youn-Kyou;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, we estimated the dynamic tensile strength and strain rate from Brazilian tensile test using Split Hopkinson Pressure Bar (SHPB) system. A pulse shaping technique, which controls the shape of the impactinduce incident waves, was used for achieving the dynamic stress equilibrium and constant strain rate before fracture of rock samples. Three kinds of rock type, Inada granite, Kimachi sandstone and Tage tuff were prepared as 50mm in diameter and 26 mm in thickness. The high-speed videography system was used to observe the fracture processes of the rock samples. As the results of the tests, the ratio of dynamic tensile strength and static tensile strength was 11.9 for Inada granite, 8.5 for Kimachi sandstone and 9.2 for Tage tuff.

Tensile Strength Measurement on Compacted Sand-Bentonite Mixtures (다짐된 모래-벤토나이트 혼합토의 인장강도 측정)

  • Jung, Soo-Jung;Kim, Tae-Hyung;Kim, Chan-Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.377-384
    • /
    • 2006
  • Theoretical and experimental study of the unconfined penetration (UP) test was conducted to suggest a new test method (referred to as IUP, Improved Unconfined Penetration) for determination of the tensile strength of compacted sand-bentonite mixtures. The tensile strength of compacted mixtures can be calculated from limit analysis based on the theory of perfect plasticity. The measurement errors in new test method were reduced by improving the UP device. Preliminary experiment results indicate that the tensile strength increases with increasing the disk size, loading rate and pH level. In addition, the disk diameter with 25.4 mm and the loading rate with 0.5%/min~1%/min are most suitable condition for the IUP test. The reliability of IPU test was verified by through the fact that good agreement between the IUP and conventional split tensile test results is observed.

Theory and Practice in the Tensile Strength Test for Split Ring Shaped Rock Specimen (터진고리 형태의 암석시편에 대한 인장강도 시험의 이론과 실제)

  • Choi, Byung-Hee;Lee, Youn-Kyou;Park, Chan;Park, Chulwhan
    • Explosives and Blasting
    • /
    • v.38 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • In this study the split ring (SR) test was investigated for its applicability to the measurement of the tensile strength of rock specimen of NX size. The concept of the SR test is the same as the half ring (HR) test (Choi et al., 2019) except that the expected fracture plane is perpendicular to the loading direction. Because of this perpendicularity, however, it was believed that the SR test could be more accurate than the HR test. Like the HR specimen, the SR specimen is a curved prismatic bar with a uniform section. Appealing to a basic bending theory in strength of materials, the tensile strength for the special bar can be calculated analytically. Numerical simulations using LS-DYNA revealed, as expected, that the strength errors were 1% and 5% for the tensional and compressional SR tests, respectively, which were much lower than that (12%) of the HR test. To identify the performance of the two SR tests, laboratory experiments were conducted. The HR and Brazilian tests were also performed for comparison. The experiments showed that the ratios of the tensional and compressional SR to Brazilian strengths were 1.2~1.4 and 1.1~1.2, respectively, which are too small compared to empirical values in ordinary bend tests. Consequently, it is concluded that the SR test is not appropriate for use in tensile strength test of rock specimen of NX size. But the ratio of the HR to Brazilian strengths was within 1.7~2.0 for both the previous and present studies, showing a good consistency in their test results.

Mechanical and durability properties of marine concrete using fly ash and silpozz

  • Jena, T.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.47-68
    • /
    • 2018
  • This article reports the utilization of fly ash (FA) waste product from industry and silpozz which is an agro-waste from agriculture as an environmental friendly material in construction industry. The evaluation of strength and durability study was observed using FA and silpozz as a partial replacement of Ordinary Portland Cement (OPC). The studied parameters are compressive strength, flexural strength, split tensile strength and bond strength as well as the durability study involves the acid soluble chloride (ASC), water soluble chloride (WSC), water absorption and sorptivity. Scanning electron microscopy (SEM) and XRD of selected samples are also done. It reveals from the test results that the deterioration factor (DF) in compressive strength is 4% at 365 days. The DF of split tensile strength and flexural strength is 0.96% and 0.6% at 90 days respectively. The minimum slip is 1mm and 1.1mm after 28 days of testing bond strength for NWC and SWC sample respectively. The percentage decrease in bond strength is 10.35% for 28 days SWC samples. The pre-cast blended concrete samples performed better to chloride diffusion. Modulus of elasticity of SWC samples are also studied.The water absorption and sorptivity tests are conducted after 28 days of curing.

Structural Tensile Capacities of Split-Tee Connection with High Strength Bolts (고력볼트 Split Tee 접합부의 인장내력)

  • Choi, Hye Kyoung;Choi, Sung Mo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.541-549
    • /
    • 2003
  • Split-tee connection with High Strength Bolts is normally used in low and middle rise buildings in Europe because the structural efficiency and installation work of connections are excellent. However, the domestic situation is different from that in Europe. The analysis and the design for the T-split connection are complicated, because the structural behavior often T-split connection with High Strength Bolt is governed by so many parameters, i.e., prying action, bolt's tension, shear failure and plastic failure of flange plates. Many researches regarding the structural behavior of the split-tee connection have been undertaken in other parts of the world, such as the, Americas, Japan and Europe, but in the domestic context, this is a pioneering study. Therefore, the purpose of this paper is to supply basic data for the design of T-split connection, and to verify the structural characteristics that define reactions to prying action, based on an experimental study.