• Title/Summary/Keyword: split-ring resonator(SRR)

Search Result 41, Processing Time 0.023 seconds

Microstrip Square Open Loop Metamaterial Resonator and Rat Race Coupler for Low Phase Noise Push-Push VCO

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.235-238
    • /
    • 2011
  • In this paper, a novel low phase noise voltage-controlled oscillator (VCO) using metamaterial structure and rat race coupler is presented for reducing the phase noise without the reduction of the frequency tuning range. The metamaterial structure has been realized by microstrip square open loop double split ring resonator (SRR). The rat race coupler shows slightly higher transmission compared to a Wilkinson combiner and is, therefore, used instead to improve the performances of VCO. By providing these unique modifications, the proposed push-push VCO has a phase noise of -126.30~-124.83 dBc/Hz at 100 kHz in the tuning range of 5.672~5.800 GHz.

Design and Fabrication of UWB Antenna Using the SRR for WLAN Band Rejection (SRR을 이용한 WLAN 대역 저지용 UWB 안테나의 설계 및 제작)

  • Jo, Nam-I;Kim, Dang-Oh;Kim, Che-Young;Choi, Dong-Muk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.1014-1020
    • /
    • 2009
  • In this paper, a novel UWB(Ultra Wide-band) antenna with suppressed band of IEEE 802.11a($5.15{\sim}5.825\;GHz$) WLAN was designed and fabricated by using SRR(Split Ring Resonator) with band rejection property. MWS(Micro-wave Studio) of CST company was utilized in the design stage. The antenna was fabricated on a substrate, Rogers 4003, with the thickness of 0.8 mm and relative permittivity of 3.38. The measured result shows that the proposed antenna has a good return loss below -10 dB and group delay below 1nsec over UWB communication band($3.1{\sim}10.6\;GHz$) except WLAN band. It also shows the omni-directional radiation pattern.

A RF Resonator Using Square SRR at 3 T MRI (3 T 자기공명영상시스템에서의 SRR을 이용한 RF 공진기)

  • Son, Hyeok-Woo;Cho, Young-Ki;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.280-283
    • /
    • 2015
  • This paper demonstrates a new radio frequency (RF) resonator at 3 T magnetic resonance imaging (MRI) system. An approach based on a split ring resonator (SRR) having effective metamaterial properties is investigated. Electromagnetic simulation results are compared for RF resonators and discussed in detail at 3 T. A new RF resonator has approximately 10% higher magnetic fields at the center of the human phantom than the previous RF resonator.

Design of the T-SRR and Low Loss Band-pass Filter Using MNG Metamaterial (MNG 메타 인공 물질을 이용한 T-SRR 및 저손실 대역통과 필터의 설계)

  • Yoon, Ki-Cheol;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2512-2520
    • /
    • 2013
  • In this paper, the T-SRR (Triple Split Ring Resonator) using MNG (mu-Negative) meta-material adapted in a low-loss bandpass filter with 3-stages is suggested. The size of the T-SRR in the proposed bandpass filter with low dielectric constant PCB can be easily controlled. And the ${\lambda}/4$ transmission line theory is applied. The proposed T-SRR and filter have the center frequency of 10 GHz with QL value of 184 for military-satellite communication system in I band. The experimental results of the filter show that the insertion and return losses are 1.44 dB and 17.3 dB with bandwidth of 10 %, respectively. The proposed filter will be redesigned by IPD material etc. should be placed here. These instructions give you guidelines for preparing papers for JICCE.

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

A Compact Tunable Bandpass Filter Using Coupled Metamaterial Resonators with Varactor Diode

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.484-488
    • /
    • 2010
  • In this paper, we present a novel tunable microstrip bandpass filter based on split ring resonators (SRRs). The varactors are reverse-biased semiconductor diode, and are connected between the concentric rings of the SRR. An individual varactor loaded SRR based bandpass tunable filter module is analyzed. Then a second order tunable filter with 7% fractional bandwidth and a tuning range from 2.75 to 2.86 GHz is assembled from basic filter modules. The simulator HFSS (V10) is used to design the tunable filter and to simulate. The results show good characteristics is created.

Dual-Band Metamaterial Absorber without Metallic Back-Plate (금속 접지 판이 없는 이중대역 메타 물질 흡수체)

  • Lee, Hong-Min;Lee, Hyung-Sup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.840-843
    • /
    • 2012
  • In this paper, the authors present a new design for a dual-band metamaterial(MTM) absorber that utilizes resonant-magnetic inclusion of a split-ring resonator(SRR). The proposed MTM unit cell is constructed by two open complementary split-ring resonators(OCSRRs) and an SRR arrangement. To avoid the need for metallic back plate a planar array of SRRs for resonant-magnetic inclusion is placed facing toward the incident wave propagation direction. Each unit cell is printed on the two sides of a FR-4 substrate. A prototype absorber was fabricated with a planar array of $39{\times}39$ unit cells, and measured. The proposed backplane-less absorber can be used for microwave applications.

Design and Analysis of 3D Isotropic Metamaterial Bulk Structure Using Thin Wire and SRR (Thin Wire와 SRR을 이용한 3D 등방성 Metamaterial Bulk 구조 설계 및 분석)

  • Kim, Chung-Ju;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.919-925
    • /
    • 2011
  • In this paper, we designed and analyzed a 3D isotropic bulk structure consisting of thin wires and SRR's(Split Ring Resonator) with which the permittivity and permeability can be controlled at the same time. For the 3D isotropic bulk structure, first of all, the geometry seen by three main axes must look alike. Thus, we adopted the orthogonal thin wires and symmetrical SRR's. As a result, we constructed metamaterial bulk structures of which effective relative permittivity and permiability are about -0.6 and -1.5, respectively. Its refractive index is about -0.95 in each direction(x, y and z direction). The computed Brillouin dispersion diagram also showed that the proposed structure is almost near isotropic.

Low Phase Noise VCO with X -Band Using Metamaterial Structure of Dual Square Loop (메타구조의 이중 사각 루프를 이용한 X-Band 전압 제어 발진기 구현에 관한 연구)

  • Shin, Doo-Soub;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.84-89
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator (VCO) using the microstrip square open loop dual split ring resonator is presented for reducing the phase noise. The square-shaped dual split ring resonator having the form of the microstrip square open loop is investigated to reduce the phase noise. Compared with the microstrip square open loop resonator and the microstrip square open loop split ring resonator as well as the conventional microstrip line resonator, the microstrip square dual split ring resonator has the larger coupling coefficient value, which makes a higher Q value, and has reduced the phase noise of VCO. The VCO with 1.7V power supply has the phase noise of -123.2~-122.0 dBc/Hz @ 100 kHz in the tuning range, 11.74~11.75 GHz. The figure of merit (FOM) of this VCO is-214.8~-221.7 dBc/Hz dBc/Hz @ 100 kHz in the same tuning range. Compared with VCO using the conventional microstrip line resonator, VCO using microstrip square open loop resonator, the phase noise of VCO using the proposed resonator has been improved in 26 dB, 10 dB, respectively.

Extraction of Effective Permittivity and Permeability of Periodic Metamaterial Cells (주기 구조 Metamaterial의 유효 유전율과 투자율 추출)

  • Lee, Dong-Hyun;Park, Wee-Sang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.60-68
    • /
    • 2008
  • The complex permittivity and permeability of various periodic metamaterial (MTM) cells are extracted by simulating a fictitious rectangular waveguide consisting of PEC and PMC walls. The shapes of the MTM cells include a thin wire (TW), a single split-ring resonator (SSRR), a double SRR (DSRR), a modified SRR, and a combined structure of the TW and the DSRR. The TW falls on a negative-$\varepsilon$/positive-$\mu$ region, the SRRs on a positive-$\varepsilon$/negative-$\mu$ region, and the combined structure on a negative-$\varepsilon$/negative-$\mu$ region. We also investigate how the permeability and permeability are affected by the dimension parameters of the MTM cells. Another extraction technique utilizing time domain signals is developed overcoming some limitations that the waveguide technique can not handle.