• Title/Summary/Keyword: split ground gap

Search Result 3, Processing Time 0.019 seconds

Analysis of Split Power/Ground Plane Structures for Radiated EMI Reduction (EMI 저감을 위해 분할된 전원/접지 평판 구조에서의 방사성 방출 분석)

  • Lee, Jang-Hoon;Lee, Pil-Soo;Lee, Tae-Heon;Kim, Chang-Gyun;Song, In-Chae;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.43-50
    • /
    • 2010
  • In this paper, we analyzed radiated emission generated by the split power/ground plane structures in order to reduce EMI in system modules. The magnetic fields and electric fields were simulated and measured on the test boards under various conditions. In order to reduce radiated emission, we have to determine spacing and location of the split ground gap so that input signal frequency does not coincide with the resonance frequency of the split power/ground plane structure and the phase of reflection coefficient is close to $0^{\circ}$ at input signal frequency. Moreover, we found that inserting a stitching capacitor could reduce the radiated emission. Low magnitude of reflection coefficient and the phase close to $0^{\circ}$ are required to reduce radiated emission. It is necessary to properly decide value and location of a stitching capacitor to fulfil those requirements.

EMI Analysis on Microstrip Line with Defected Ground plane (결함구조를 갖는 접지면을 고려한 마이크로 스트립 선로의 EMI 분석)

  • Oh Sang-Bae;Kim Hyeong-Seok;Choi Kyoung
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.158-161
    • /
    • 2006
  • In this paper, we deal with EMI Analysis on Microstrip with Defected Ground plane. Specially, we investigate reflection, transmission, crosstalk, radiated emission on Microstrip with Defected Ground plane structure. And investigates undesired effects on various defected ground plane such as ground with split, slot, short end and open end gap. To analyze reflection, transmission and crosstalk of microstrip with defected ground plane, we used concept of the microstrip to slot line transition model. Besides, investigate radiated emission using FDTD Commercial tools such as CST MW

  • PDF

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF