• Title/Summary/Keyword: spinel oxides

Search Result 53, Processing Time 0.021 seconds

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation

  • Yi, Eun-Jeong;Yoon, Mi-Young;Moon, Ji-Woong;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:$ZnCo_2O_4$ Thin-Film

  • Lee, Chil-Hyoung;Choi, Won-Kook;Lee, Jeon-Kook;Choi, Doo-Jin;Oh, Young-Jei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.87-87
    • /
    • 2011
  • Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:$ZnCo_2O_4$ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:$ZnCo_2O_4$ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:$ZnCo_2O_4$ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:$ZnCo_2O_4$ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of 36~85%, and hole mobility of 1.1~3.7 $cm^2$/Vs, were obtained.

  • PDF

Ceramic Materials for Interconnects in Solid Oxide Fuel Cells - A Review (고체산화물 연료전지 연결재용 세라믹 소재)

  • Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Park, Chong-Ook;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.231-242
    • /
    • 2014
  • An interconnect in solid oxide fuel cells (SOFCs) electrically connects unit cells and separates fuel from oxidant in the adjoining cells. The interconnects can be divided broadly into two categories - ceramic and metallic interconnects. A thin and gastight ceramic layer is deposited onto a porous support, and metallic interconnects are coated with conductive ceramics to improve their surface stability. This paper provides a short review on ceramic materials for SOFC interconnects. After a brief discussion of the key requirements for interconnects, the article describes basic aspects of chromites and titanates with a perovskite structure for ceramic interconnects, followed by the introduction of dual-layer interconnects. Then, the paper presents protective coatings based on spinel-or perovskite-type oxides on metallic interconnects, which are capable of mitigating oxide scale growth and inhibiting Cr evaporation.

Crystal structure of Mn-Co-Ni thermistor (Mn-Co-Ni 서미스터의 결정구조 분석)

  • Lee, Jung-Il;Mhin, Sungwook;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.225-229
    • /
    • 2015
  • This study was performed to investigate crystal structure of cubic spinel-type monophase oxide composed of the Mn-Co-Ni ternary system. Starting material was prepared by mixing Mn, Co, Ni oxides then evaporation to dryness. The XRD patterns were analyzed by in-situ XRD as increasing temperature from room temperature to $1400^{\circ}C$ in air atmosphere. The cubic spinel phase was existed in a temperature range from $900^{\circ}C$. However, separation of NiO phase was detected from $1300^{\circ}C$, which was the origin of deterioration in the crytallinity. The surface morphology of the manufactured NTC thermistors were analyzed by FE-SEM for comparison of good and bad samples.

A Study on Accelerated Corrosion Rate of Stainless Steel Type 630 with Increasing Temperature of B-free Alkaline Coolant (무붕산 알칼리 냉각재 온도 증가에 따른 Type 630 스테인리스강의 부식특성 평가 연구)

  • Jeongsoo Park;Sang-Yeob Lim;Soon-Hyeok Jeon;Ju-Seong Kim;Jeong-Mok Oh;Hee-Sang Shim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2024
  • Stainless 630 (or 17-4PH) is a precipitation-hardening martensitic stainless steel that has excellent mechanical properties and corrosion resistance. These characteristics make the STS630 to be used as a consisting material for various components such as spider, pin, spring, and spring retainer, of the control rod drive mechanism (CRDM) in pressurized water reactors (PWRs). In general, it is well known that the oxide layer of stainless steel consists of a duplex layer, a compact inner layer of FeCr2O4 spinel, and a coarse-grained outer layer of Fe3O4 spinel in PWR primary coolant condition. However, the characteristics of the oxide layer can be sensitively influenced by various water chemistry conditions such as temperature, dissolved oxygen, dissolved hydrogen, pH, pH adjuster type, and exposure time. In this work, we investigate the corrosion properties of the STS630 as a function of coolant temperature in an NH3 alkaline solution for its boron-free application in a small modular reactor, to confirm the feasibility for usage as a boron-free SMR structural material. As a result, oxide layer of corroded STS630 is consist of double-layer oxides consisting of a Cr-rich dense inner oxide and a Fe-rich polyhedral outer particles like as that in commercial PWR primary coolant. The corrosion rate of STS630 increases with increase in test time and temperature and the corrosion rate-time model equation was developed based on experimental data. Overall, it is expected that the results in this study provides useful data for the corrosion behavior of STS630 in alkaline environments, contributing to the development of selecting suitable materials for SMRs.

Relationship between Structural Stability and Crystallinity in Layered Manganese Oxide (층상구조 망간산화물에서의 구조적 안정도와 결정성과의 관계)

  • Hwang, Seong-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • The effect of crystallinity on the structural stability of layered manganese oxide has been systematically investigated. While well-crystalline manganate was prepared by solid-state reaction-ion exchange method, nanocrystalline one was obtained by Chimie-Douce reaction at room temperature. According to micro-Raman and Mn K-edge X-ray absorption spectroscopic results, manganese ions in both the manganese oxides are stabilized in the octahedral sites of the layered lattice consisting of edge-shared MnO6 octahedra. The differential potential plot clarifies that the layered structure of nanocrystalline material is well maintained during electrochemical cycling, in contrast to the well-crystalline homologue. From the micro-Raman results, it was found that delithiation-relithiation process for well-crystalline material gives rise to the structural transition from layered to spinel-type structure. On the basis of the present experimental findings, it can be concluded that nanocrystalline nature plays an important role in enhancing the structural stability of layered manganese oxides.

The Effects of Cr-Substitution in Ferrite Catalysts and the Catalytic Dehydrogenation of Ethylbenzene (페라이트 촉매의 Cr 치환효과와 에틸벤젠의 탈수소반응)

  • Lim, Ki-Chul;Kim, Eul-San;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 1991
  • Mg- and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituent single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, TG/DTA, ESCA, TEM, and TPD methods were employed. The effects of Cr-substitution were intensively studied by the experimental methods mentioned above. Chromium which showed a preferential tendency to diffuse to the surface acted as a structural promoter by increasing surface area and stability of catalyst structure. In the dehydrogenation of ethylbenzene, catalytic activity, and the effects of Cr-substitution were investigated. Oxygen mobility was decreased with the amount of Cr-substitution in $MgCr_xFe_{2-x}O_4$, which resulted in the increase of selectivity to styrene and the suppression of total oxidation.

  • PDF

The Effects of K-Addition and the Catalytic Dehydrogenation of Ethylbenzene on Ferrite Catalysts (페라이트 촉매의 K 첨가효과와 에틸벤젠의 탈수소반응)

  • Kim, Ki-Chul;Lee, Gun Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.722-729
    • /
    • 1992
  • Mg-and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituently single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, DTA, XPS, TEM and TPD methods were employed. Potassium added to the catalyst played a role of bifunctional promoter which brought the electronic effect as well as the structural one for the increment of particle dispersion. K-addition decreased acid strength of the catalyst by neutralization and increased its acidity. In the dehydrogenation of ethylbenzene, K-addition let the selectivity to styrene be constant throughout the reaction by the proper acid strength of the ferrite for the reaction, which could be obtained from the neutralization of strong acid sites by potassium.

  • PDF

Effect of ZrO2 Addition on the Microstructure and Electrical Properties of Ni-Mn Oxide NTC Thermistors (Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 ZrO2첨가의 효과)

  • 박경순;방대영;윤성진;최병현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • The effect of$ZrO_2$addition on the microstructure and electrical properties of Ni-Mn oxide NTC thermistors was studied. Major phases present in the sintered bodies of $Ni_{1.0}Mn_{2-x}Zr_xO_4$ were the solid solutions of Ni-Mn-Zr oxides with a cubic spinel structure and the $ZrO_2$ with a tetragonal structure. The $ZrO_2$ was formed by the partial decomposition or incomplete formation of the Ni-Mn-Zr oxides during sintering. With increasing the amount of added $ZrO_2$, the $ZrO_2$ phase increased. The relationship between log resistivity (log p) and the reciprocal of absolute temperature (1/T) of the NTC thermistors prepared was linear, indicative of NTC characteristics. The resistivity, B constant and activation energy of the thermistors increased with increasing $ZrO_2$ content.

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF