• Title/Summary/Keyword: spinel lherzolites

Search Result 7, Processing Time 0.021 seconds

Petrology of Spinel lherzolite from South Korea: Implication for P/T Estimate

  • Lee, Han-Yeang
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.38-51
    • /
    • 2002
  • Mantle xenoliths in alkali basalt at Boun, the Gansung area and Baegryung Island in South Korea are spinel lherzolites composed of olivine, orthopyroxene, clinopyroxene, and spinel. Minerals show homogeneous compositions. Olivine compositions have Fo$_{89.0}$ to Fo$_{90.2}$, low CaO (0.03 to 0.12 wt%), and NiO of 0.34 to 0.40 wt%; the orthopyroxene is enstatite with En$_{89.0}$ to En$_{90.0}$ and Al$_{2}$O$_{3}$ of 4 to 5 wt%; the clinopyroxene is diopside with En$_{47.2}$ to En$_{49.1}$ and Al$_{2}$O$_{3}$ of 7.42 to 7.64 wt% from Boun and 4.70 to 4.91 wt% from Baegryung. Spinel chemistry shows a distinct negative trend, with increaeing Al corresponding with decreasing Cr, and Mg$^{#}$ (100Mg/Mg+Fe) and Cr$^{#}$ (100Cr/Cr+Al) of 75.1 to 81.9 and 8.5 to 12.6, respectively. The equilibrium temperatures of these xenoliths, taken as the average obtained from those of Mercier (1980) and Sachtleben and Seck (1981), lie between 970 and 1020$^{\circ}$C, and equilibrium pressures derived from Mercier (1980) fall within the range of 12 to 19 kbar (i.e., 42 to 63 km). These temperatures and pressures are reinforced by considerations of the Al-isopleths in the MAS system (Lane and Ganguly, 1980), as adjusted for the Fe effect on Al solubility in orthopyroxene (Lee and Ganguly, 1988). The equilibrium temperatures and pressures of xenoliths, as considered in P/T space, belong to the oceanic geotherm, based upon the various mantle geotherms presented by Mercier (1980). This geotherm is completely different from continental geotherms, e.g., from South Africa (Lesotho) and southern India. Mineral compositions of spinel-lherzolites in South Korea and eastern China are primitive; paleo-geotherms of both are quite similar, but degrees of depletion of the upper mantle could vary locally. This is demonstrated by eastern China, which has various depleted xenoliths caused by different degrees of partial melting.

Petrology and Geochemistry of Peridotite Xenoliths from Miocene Alkaline Basalt Near the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암에 포획된 페리도타이트의 암석학적/지화학적 특성)

  • Kim, Eunju;Park, Geunyeong;Kim, Sunwoong;Kil, Youngwoo;Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.311-325
    • /
    • 2017
  • Peridotite xenoliths in middle Miocene alkaline basalt from the Mt. Baekdu area are mainly anhydrous spinel lherzolites, displaying coarse-grained protogranular texture. These xenoliths have late-stage secondary orthopyroxene replacing olivine as the metasomatic mineral and glass formed along the grain boundaries. The studied xenoliths are characterized by the high $Mg{\sharp}[=100{\times}Mg/(Mg+Fe_{total})$ atomic ratio] of olivine, orthopyroxene and clinopyroxene (89~92) and the $Cr{\sharp}[=100{\times}Cr/(Cr+Al)$ atomic ratio] of spinel (10~29). Based on major-element data, the studied xenoliths are similar to those from the abyssal peridotites. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting two types of REE patterns: (1) LREE-depleted with $(La/Yb)_N$ of 0.1~0.2 and $(La/Ce)_N$ of 0.4~0.8. (2) LREE enriched with $(La/Yb)_N$ of 2.2~3.8 and $(La/Ce)_N$ of 1.2~1.6. The calculated equilibrium temperatures and oxygen fugacities resulted in $920{\sim}1050^{\circ}C$ and ${\Delta}fO_2(QFM)=-0.8{\sim}0.2$, respectively. It is suggested that the Mt. Baekdu peridotite xenoliths represent residues left after variable degrees of melt extraction(less than 15 vol%), which was subsequently subjected to different degrees of modal/cryptic metasomatism by silica- and LREE-enriched fluids (or melts).

Fluid Inclusions Trapped in Xenoliths from the Lower Crust/upper Mantle Beneath Jeju Island (I): A Preliminary Study (제주도의 하부지각/상부맨틀 기원의 포획암에 포획된 유체포유물: 예비연구)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.34-45
    • /
    • 2004
  • This paper describes the textural relations of mantle xenoliths and fluid inclusions in mantle-derived rocks found in alkaline basalts from Jeju Island which contain abundant ultramafic, felsic, and cumulate xenoliths. Most of the ultramafic xenoliths are spinel-lherzolites, composed of olivine, orthopyroxene, clinopyroxene and spinel. The felsic xenoliths considered as partially molten buchites consist of quartz and plagioclase with black veinlets, which are the product of ultrahigh-temperature metamorphism of lower crustal materials. The cumulate xenoliths, clinopyroxene-rich or clinopyroxene megacrysts, are also present. Textural examination of these xenoliths reveals that the xenoliths are typically coarse grained with metamorphic characteristics, testifying to a complex history of evolution of the lower crust/upper mantle source region. The ultramafic xenoliths contain protogranular, porphyroclastic and equigranular textures with annealing features, indicating the presence of shear regime in upper mantle of the Island. The preferential associations of spinel and olivine with large orthopyroxenes suggest a previous high temperature equilibrium in the high-Al field and the original rock-type was a Al-rich orthopyroxene-bearing peridotite without garnet. Three types of fluid inclusions trapped in mantle-derived xenoliths include CO$_2$-rich fluid (Type I), multiphase silicate melt (glass ${\pm}$ devitrified crystals ${\pm}$ one or more daughter crystals + one or more vapor bubbles) (Type II), and sulfide (melt) inclusions (Type III). C$_2$-rich inclusions are the most abundant volatile species in mantle xenoliths, supporting the presence of a separate CO$_2$-rich phase. These CO$_2$-rich inclusions are spatially associated with silicate and sulfide melts, suggesting immiscibility between them. Most multiphase silicate melt inclusions contain considerable amount of silicic glass. reflecting the formation of silicic melts in the lower crust/upper mantle. Combining fluid and melt inclusion data with conventional petrological and geochemical information will help to constrain the fluid regime, fluid-melt-mineral interaction processes in the mantle of the Korean Peninsula and pressure-temperature history of the host xenoliths in future studies.

Petorshemical Study on the Mantle Xwnoliths in alkli basalts from S. Korea: P-T Regime of Upper Mantle (남한의 알카리 현무암에 분포하는 맨틀포획암의 암석화학적 연구: 상부맨틀포획암의 암석화학적 연구: 상부맨틀의 온도 및 압력 추정)

  • 이한영
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.104-123
    • /
    • 1995
  • Mantle xenoliths in alkali basalt from Boun, Gansung area, and Baegryung island in S. Korea are spinel lherzolites composed of olivine, orthopyroxene, clinopyroxene, and spinel. The xenoliths generally show triple junctions among grams, kink-banding in olivine and pyroxenes, and protogranular and eqigranular textures having m orlentatron of specific direction. Anhedral brown spinels are disseminated in the intergranular spaces of minerals. Mineral compositions are very homogeneous without compositional zonation from rim to core in grains regardless different locahties. Olivine shows Fo. component of 89.0-90.2 and low CaO of 0.03-0.12wt%, orthopyroxene is enstatite with En component of 89.0 - 90.0 and $Al_2O_3$ of 4-5wt%, and clinopyroxene is diopside having En. component of 47.2-49.1 and $Al_2O_3$ of 7.42-7.64wt% from Boun and 4.70-4.91wt% from Baegryung showing local variation. Spinel shows the distinctive negative trend with increasing of A1 and decreasing of Cr, and Mg value and Cr number are 75.1-81.9 and 8.5-12.6, respectively. To estlmate T and P for these mantle xenoliths pyroxene-geothermometers (Wood and Banno, 1973; Wells, 1977; Mercier, 1980; Sachtleben and Seck, 1981; Bertrand and Mercier, 1985; Brey and Kohler, 1990) and Al-solubility geobarometer (Mercier, 1980; Lane and Ganguly, 1980) are used. Temperatures of Mercier (1980) and Sachtleben and Seck (1981) are compatible and equilibrium temperatures of xenoliths, average value of these two, aiie from $970^{\circ}C$ to $1020^{\circ}C$, and equihbrium pressures derived from Mercier (1980) are in the range of 12-19 Kb (42-63 Km). These temperatures and pressures seem to be reasonble wlth the consideration of Al-isopleths in MAS system (Lane and Ganguly, 1980) and Fe effect on Al-solubility in orthopyroxene (Lee and Ganguly, 1988). Equllibrium of temperatures and pressures of xenoliths in P-T space belong to ocenanic geothem among the Mercier's mantle geotherms (1980) and are completely different from continental geotherms of S. Africa (Lesotho) and S. India having different geologcal ages. anera1 compositions of spmel-lherzohtes in S. Korea and eastern China are primitwe and paleogeothems of both are very s~mllar, but degrees of depletion of upper mantle could be locally different from each other since eastern China has various depleted xenoliths due to different degrees of partial melting.

  • PDF

Evolution of the Subcontinental Lithospheric Mantle of Korean Peninsula: Partial Loss and its Timing (한반도 대륙암권맨틀의 진화: 부분적 손실과 그 시기)

  • Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.199-208
    • /
    • 2010
  • The Cenozoic alkali basalts are distributed over Korea, both on central part as Bangnyeongdo, Ganseong, Pyeongtaek-Asan and Jogongni and also on southernmost part Jejudo. The ultramafic mantle xenoliths carried by Korean alkali basalts are spinel lherzolites. Garnet lherzolite that is more stable at the deeper level has not been reported so far, indicating that the lithospheric thickness under Korea does not reach deep enough to the stable zone of garnet lherzolite. The crustal evolution history of the Korean peninsula, at least some part of it, seemingly started since the Archean, it normally should have lithospheric thickness greater than 150 km. However, the mantle xenoliths carried by the Cenozoic alkali basalts indicate the maximum depth of origination in the much shallower range of 60-90 km. Such significantly thinner lithospheric thickness of the Korean peninsula than expected is quite similar to the case of North China Craton having lithospheric thickness of ca. 80 km in average, suggesting thinning of the lithospheric mantle in a depth scale of a few tens of kilometers during the past geologic time. The main causal events for such significant thinning of the lithospheric mantle can be continental collisional events of Paleoproterozoic and early Mesozoic similar to the case of North China Craton, which are also supported by Paleoproterozoic igneous and metamorphic events during the 1.9-2.0 Ga occurring all over the Korean peninsula and also early Mesozoic continental collisional event which has been discussed on lively arguments.

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts (우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰)

  • Choi, Sung-Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.235-247
    • /
    • 2012
  • Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.