• Title/Summary/Keyword: spinel ferrite

Search Result 131, Processing Time 0.025 seconds

The Magnetic Properties of Co-Zn Mixed Y-type Hexagonal Ferrite (Co-Zn 복합 Y-형 육방정 페라이트의 자기적 특성)

  • 이종협;권순주
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.114-121
    • /
    • 1994
  • A $Ba_{2}Co_{2-x}Zn_{x}Fe_{12}O_{22}(x\;=\;0.0~2.0,\;Co_{2-x}Zn_{x}Y)$ powder was prepared by a oxidation--coprecipitation method and sintered at $1150~1250^{\circ}C$ for 4 hours. The microstructures and magnetic properties(saturation magnetization, Curie temperature), complex permeability of sintered body were measured As increasing Zn content from x = 0 to 2.0 in $Co_{2-x}Zn_{x}Y$, the real value of complex permeased from 7 GHz to 1 GHz. Because of resonance in few GHz range, Y-type hexagonal ferrite is rmre applicalble than spinel ferrite in high frequency range, and more research would be necessary to find the mechanism of the second resonance observed in higher frequency.

  • PDF

Mössbauer Spectroscopic Studies of NiZn Ferrite Prepared by the Sol-Gel Method

  • Niyaifar, Mohammad;Mohammadpour, Hory;Rodriguez, Anselmo F.R.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.246-251
    • /
    • 2015
  • This study was aimed to study the effect of Zn content on the hyperfine parameters and the structural variation of $Ni_{1-x}Zn_xFe_2O_4$ for x = 0, 0.2, 0.4, 0.6, and 0.8. To achieve this, a sol-gel route was used for the preparation of samples and the obtained ferrites were investigated by X-ray diffraction, scanning electron microscopy, and $M{\ddot{o}}ssbauer$ spectroscopy. The formation of spinel phase without any impurity peak was identified by X-ray diffraction of all the samples. Moreover, the estimated crystallite size by X-ray line broadening indicates a decrease with increasing Zn content. This result was in agreement with the scanning electron microscopy result, indicating the reduction in grain growth with further zinc substitution. The room-temperature $M{\ddot{o}}ssbauer$ spectra show that the hyperfine fields at both the A and B sites decreased with increasing Zn content; however, the rate of reduction is not the same for different sites. Moreover, the best fit parameter showed that the quadrupole splitting values of B site increased from the pure nickel ferrite to the sample with x = 0.8.

Synthesis Processing of the Fine (Ni, Zn)-ferrite Powder for $CO_2$ Decomposition of the Flue Gas in the Iron Foundry (제철소의 연소배가스 $CO_2$ 분해용 (Ni, Zn)-ferrite 미세분말 합성공정 연구)

  • 김정식;안정률
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.164-167
    • /
    • 2000
  • Flue gases in the iron foundry consist of 15~20% CO2 as an air pollution gas whose emission should be mitigated in order to protect the environment. In the present study, ultrafine powders of NixZn1-xFe2O4 as a potential catalyst for the CO2 decomposition were prepared by the coprecipitation methods. Oxygen deficient ferrites (MeFe2O4-$\delta$) can decompose CO2 as C and O2 at a low temperature of about 30$0^{\circ}C$. The XRD result of synthesized ferrites showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with initial molar ratios of the mixed solution prior to reaction. The BET surface area of the (Ni, Zn)-ferrites was about 77~89.5$m^2$/g and their particle size was observed about 10~20 nm. The CO2 decomposition efficiency of the oxygen deficient (Nix, Zn1-x)-ferrites was the highest at x=0.3, and the ternary (Ni, Zn)-ferrites was better than that of binary Ni-ferrites.

  • PDF

The Properties of Spin Valves with a Partially Oxidized Fe or CoFe Ultra-Thin Layer Inserted in the Magnetic Layers

  • In, Jang-sik;Han,Yoon-sung;Kim, Sung-hoon;Shim, Jae-chul;Hong, Jong-ill
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.115-118
    • /
    • 2006
  • Co-ferrite nanoparticles have been synthesized by the decomposition of iron(III) acetylacetonate, $Fe(acac)_3$ and Co acetylacetonate, $Co(acac)_2$ in benzyl/phenyl ether in the presence of oleic acid and oleyl amine at the refluxingtemperature of $295^{\circ}C$/$265^{\circ}C$ for 30 min. before cooling to room temperature. Particle diameter detected by PSA can be turned from 4 nm to 20 nm by seed-mediated growth and reaction conditions. Structural and magneticcharacterization of Co-ferrite were measured by use of HRTEM, SAED (selected area electron diffraction), XRD and SQUID. The as-synthesized Co-ferrite nanoparticles have a cubic spinel structure and coercivity of 20 nm $CoFe_{2}O_{4} nanoparticles reached 1 kOe at room temperature and 18 kOe at 10 K.

Preparation of$Ni_xFe_{3-x}O_4$ Films by the Ferrite Plating and Their Magnetic Properties (페라이트 도금법에 의한 $Ni_xFe_{3-x}O_4$ 박막의 제조와 자기적 성질)

  • 하태욱;이정식;김일원
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.295-299
    • /
    • 1998
  • The magnetic thin films can be prepared without vacuum process and under the low temperature(<100 $^{\circ}C$) by ferrite plating. We have performed ferrite plating of $Ni_xFe_{3-x}O_4$ (x=0.162~0.138) films on cover glass at the substrate temperature 80 $^{\circ}C$ and pH range of the oxidizing solution, 7.1~8.8. the crystal structure of the samples has been identified as a single phase of polycrystal spinel structure by x-ray diffraction technique. The deposition rate and the grain size of the film increased with the pH of oxidizing solution. The coercive force (H_C)$ decreased with the pH of oxidizing solution.

  • PDF

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance

  • Meng, Yanshuang;Cheng, Yulong;Ke, Xinyou;Ren, Guofeng;Zhu, Fuliang
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.285-295
    • /
    • 2021
  • The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films

  • Kim, Kwang Joo;Kim, Min Hwan;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.

Exchange-coupling Interaction and Magnetic Properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 Nanocomposite Ferrite (BaFe12O19/Ni0.5Zn0.5Fe2O4 나노복합체 Ferrite의 Exchange-coupling 상호 작용과 자기 특성)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.81-85
    • /
    • 2014
  • Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanocomposite ferrite were prepared by sol-gel combustion method. Nanocomposite was calcined at temperature range of $600{\sim}900^{\circ}C$ for 1 h. According to the diffraction patterns, hard/soft nanocomposite was indicated to the coexistence of the magnetoplumbite structural $BaFe_{12}O_{19}$ and spinel $Ni_{0.5}Zn_{0.5}Fe_2O_4$ and agree with the standard data (JCPDS 10-0325). The particle size of nanocomposite turn out to be less than 90 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite ($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that for the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite. $(BH)_{max}$ is increased, generally.

A Study of cut off effect of ultraviolet in sunglasses lens coated with nickel-ferrite thin film NxFe3-xO4 (니켈페라이트 박막 NxFe3-xO4를 이용한 선글라스 렌즈의 자외선 차단효과에 대한 연구)

  • Ha, T.W.;Lee, Y.H.;Choi, K.S.;Cha, J.W.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.25-29
    • /
    • 2003
  • Nickel-ferrite $Ni_xFe_{3-x}O_4$ thin films with several composition for Ni on glass substrate was prepared by ferrite plating method in order to make sunglass which cut off ultraviolet and shield electromagnetic field. It has single phase of polycrystalline spinel structure and has gloss as mirror and has high hardness which is no scratch while scraping by using nail. The transmittance of nickel-ferrite thin film is lowered to zero below 400 nm manifestly. And it shows that the nickel-ferrite thin film in nickel composition rate x = 0.09 was most cut oil ultraviolet when compared with goods of other company in the cut off effect of ultraviolet. Therefore, sunglasses coated with $Ni_xFe_{3-x}O_4$ thin film can be used in removing ultraviolet and electromagnetic field.

  • PDF

The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method

  • Choi, Seung Han
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.371-375
    • /
    • 2018
  • The manganese-, nickel-, and aluminum-doped cobalt ferrite powders, $Mn_{0.2}Co_{0.8}Fe_2O_4$, $Ni_{0.2}Co_{0.8}Fe_2O_4$, and $Al_{0.2}CoFe_{1.8}O_4$, are fabricated by the sol-gel method, and the crystallographic and magnetic properties of the powders are studied in comparison with those of $CoFe_2O_4$. All the ferrite powders are nano-sized and have a single spinel structure with the lattice constant increasing in $Mn_{0.2}Co_{0.8}Fe_2O_4$ but decreasing in $Ni_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$. All the $M{\ddot{o}}ssbauer$ spectra are fitted as a superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The values of the magnetic hyperfine fields of $Ni_{0.2}Co_{0.8}Fe_2O_4$ are somewhat increased in the A and B sites, while those of $Mn_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$ are decreased. The variation of $M{\ddot{o}}ssbauer$ parameters is explained using the cation distribution equation, superexchange interaction and particle size. The hysteresis curves of the ferrite powders reveal a typical soft ferrite pattern. The variation in the values of saturation magnetization and coercivity are explained in terms of the site distributions, particle sizes and the spin magnetic moments of the doped ions.