DOI QR코드

DOI QR Code

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance

  • Meng, Yanshuang (School of Materials Science and Engineering, Lanzhou University of Technology) ;
  • Cheng, Yulong (School of Materials Science and Engineering, Lanzhou University of Technology) ;
  • Ke, Xinyou (Department of Mechanical and Aerospace Engineering, Case Western Reserve University) ;
  • Ren, Guofeng (Department of Mechanical and Aerospace Engineering, Case Western Reserve University) ;
  • Zhu, Fuliang (School of Materials Science and Engineering, Lanzhou University of Technology)
  • Received : 2020.11.18
  • Accepted : 2021.01.26
  • Published : 2021.05.28

Abstract

The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 52064035), and the Natural Science Foundation of Gansu Province (Grant No. 20JR10RA166).

References

  1. X. Ke, J. M. Prahl, J. I. D. Alexander, J. S. Wainright, T. A. Zawodzinski, R. F. Savinell, Chem. Soc. Rev., 2018, 47(23), 8721-8743. https://doi.org/10.1039/c8cs00072g
  2. X. Ke, J. M. Prahl, J. I. D. Alexander, R. F. Savinell, J. Power Sources, 2018, 384, 295-302. https://doi.org/10.1016/j.jpowsour.2018.03.001
  3. X. Ke, J. I. D. Alexander, J. M. Prahl, R. F. Savinell, J. Power Sources, 2014, 270, 646-657. https://doi.org/10.1016/j.jpowsour.2014.07.155
  4. G. Ren, M. N. F. Hoque, J. Liu, J. Warzywoda, Z. Fan, Nano Energy, 2016, 21, 162-171. https://doi.org/10.1016/j.nanoen.2016.01.010
  5. G. Ren, M. N. F. Hoque, X. Pan, J. Warzywoda, Z. Fan, J. Mater. Chem. A, 2015, 3(20), 10787-10794. https://doi.org/10.1039/C5TA01900A
  6. Y. Li, Y. Meng, X. Liu, M. Xiao, Q. Hu, R. Li, X. Ke, G. Ren, F. Zhu, J. Power Sources, 2019, 442, 227256. https://doi.org/10.1016/j.jpowsour.2019.227256
  7. G. Ren, S. Li, Z.-X. Fan, J. Warzywoda, Z. Fan, J. Mater. Chem. A, 2016, 4(42), 16507-16515. https://doi.org/10.1039/C6TA07446D
  8. K. Cao, L. Jiao, H. Liu, Y. Liu, Y. Wang, Z. Guo, H. Yuan, Adv. Energy Mater., 2015, 5(4), 1401421. https://doi.org/10.1002/aenm.201401421
  9. L. Yin, Y. J. Gao, I. Jeon, H. Yang, J.-P. Kim, S. Y. Jeong, C. R. Cho, Chem. Eng. J., 2019, 356, 60-68. https://doi.org/10.1016/j.cej.2018.09.017
  10. S. Dong, X. Chen, X. Zhang, G. Cui, Coordin. Chem. Rev., 2013, 257(13-14), 1946-1956. https://doi.org/10.1016/j.ccr.2012.12.012
  11. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem., 2013, 5(4), 263-275. https://doi.org/10.1038/nchem.1589
  12. P. Zhu, Z. Zhang, P. Zhao, B. Zhang, X. Cao, J. Yu, J. Cai, Y. Huang, Z. Yang, Carbon, 2019, 142, 269-277. https://doi.org/10.1016/j.carbon.2018.10.066
  13. Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater., 2016, 6(8), 1502175. https://doi.org/10.1002/aenm.201502175
  14. Y. Qi, B. Liu, L. Zhang, Y. Huo, L. Li, H. Xie, C. Wang, Z. Su, J. Mater. Chem. A, 2017, 5(41), 21994-22003. https://doi.org/10.1039/C7TA07272D
  15. Z. Zhang, W. Li, R. Zou, W. Kang, Y. San Chui, M. F. Yuen, C.-S. Lee, W. Zhang, J. Mater. Chem. A, 2015, 3(13), 6990-6997. https://doi.org/10.1039/C5TA00073D
  16. C. T. Cherian, J. Sundaramurthy, M. V. Reddy, P. Suresh Kumar, K. Mani, D. Pliszka, C. H. Sow, S. Ramakrishna, B. V. R. Chowdari, ACS Appl. Mater. Inter., 2013, 5(20), 9957-9963. https://doi.org/10.1021/am401779p
  17. Y. Ma, Y. Ma, D. Geiger, U. Kaiser, H. Zhang, G.-T. Kim, T. Diemant, R. J. Behm, A. Varzi, S. Passerini, Nano Energy, 2017, 42, 341-352. https://doi.org/10.1016/j.nanoen.2017.11.030
  18. L. Hou, R. Bao, Y. Zhang, X. Sun, J. Zhang, H. Dou, X. Zhang, C. Yuan, J. Mater. Chem. A, 2018, 6(37), 17947- 17958. https://doi.org/10.1039/C8TA04347G
  19. X. Yao, J. Kong, C. Zhao, D. Zhou, R. Zhou, X. Lu, Electrochim. Acta, 2014, 146, 464-471. https://doi.org/10.1016/j.electacta.2014.08.144
  20. D. Bresser, E. Paillard, R. Kloepsch, S. Krueger, M. Fiedler, R. Schmitz, D. Baither, M. Winter, S. Passerini, Adv. Energy Mater., 2013, 3(4), 513-523. https://doi.org/10.1002/aenm.201200735
  21. Z. Zhang, Y. Wang, M. Zhang, Q. Tan, X. Lv, Z. Zhong, F. Su, J. Mater. Chem. A, 2013, 1(25), 7444-7450. https://doi.org/10.1039/c3ta10762k
  22. L. Zhang, T. Wei, Z. Jiang, C. Liu, H. Jiang, J. Chang, L. Sheng, Q. Zhou, L. Yuan, Z. Fan, Nano Energy, 2018, 48, 238-247. https://doi.org/10.1016/j.nanoen.2018.03.053
  23. L. Wan, D. Yan, X. Xu, J. Li, T. Lu, Y. Gao, Y. Yao, L. Pan, J. Mater. Chem. A, 2018, 6(48), 24940-24948. https://doi.org/10.1039/c8ta06482b
  24. X. Li, X. Tian, T. Yang, Y. Song, Y. Liu, Q. Guo, Z. Liu, J. Alloy. Compd., 2018, 735, 2446-2452. https://doi.org/10.1016/j.jallcom.2017.12.001
  25. M. Zhang, M. Jia, J. Alloy. Compd., 2013, 551, 53-60. https://doi.org/10.1016/j.jallcom.2012.09.115
  26. W. Cao, W. Wang, H. Shi, J. Wang, M. Cao, Y. Liang, M. Zhu, Nano Res., 2018, 11(3), 1437-1446. https://doi.org/10.1007/s12274-017-1759-0
  27. M. Liu, H. Jin, E. Uchaker, Z. Xie, Y. Wang, G. Cao, S. Hou, J. Li, Nanotechnology, 2017, 28(15), 155603. https://doi.org/10.1088/0957-4484/28/15/155603
  28. Ruopian Fang , S. Zhao, Pengxiang Hou , Min Cheng , Shaogang Wang , Hui-Ming Cheng , Chang Liu , F. Li, Adv. Mater., 2016, 28(17), 3373-3382.
  29. S. H. Chung, C. H. Chang, A. Manthiram, Acs Nano, 2016, 10(11), 10462-10470. https://doi.org/10.1021/acsnano.6b06369
  30. T. Chen, L. Pan, T. Lu, C. Fu, D. H. C. Chua, Z. Sun, J. Mater. Chem. A, 2014, 2(5), 1263-1267. https://doi.org/10.1039/C3TA14037G
  31. S. Li, B. Wang, J. Liu, M. Yu, Electrochim. Acta, 2014, 129, 33-39. https://doi.org/10.1016/j.electacta.2014.02.039
  32. S. Shankar, M. Kumar, A. K. Ghosh, O. P. Thakur, M. Jayasimhadri, J. Alloy. Compd., 2019, 779, 918-925. https://doi.org/10.1016/j.jallcom.2018.11.252
  33. K. Wu, D. Liu, Y. Tang, Electrochim. Acta, 2018, 263, 515-523. https://doi.org/10.1016/j.electacta.2018.01.047
  34. Z. Wang, P. Fei, H. Xiong, C. Qin, W. Zhao, X. Liu, Electrochim. Acta, 2017, 252, 295-305. https://doi.org/10.1016/j.electacta.2017.08.189
  35. Z. Xing, Z. Ju, J. Yang, H. Xu, Y. Qian, Nano Res., 2012, 5(7), 477-485. https://doi.org/10.1007/s12274-012-0233-2
  36. C. Zhang, C. Jin, G. Teng, Y. Gu, W. Ma, Chem. Eng. J., 2019, 365, 121-131. https://doi.org/10.1016/j.cej.2019.02.004
  37. S. J. Yang, S. Nam, T. Kim, J. H. Im, H. Jung, J. H. Kang, S. Wi, B. Park, C. R. Park, J. Am. Chem. Soc., 2013, 135(20), 7394-7397. https://doi.org/10.1021/ja311550t
  38. L. Qie, W. M. Chen, Z. H. Wang, Q. G. Shao, X. Li, L. X. Yuan, X. L. Hu, W. X. Zhang, Y. H. Huang, Adv. Mater., 2012, 24(15), 2047-2050. https://doi.org/10.1002/adma.201104634
  39. S. Zhu, J. Li, X. Deng, C. He, E. Liu, F. He, C. Shi, N. Zhao, Adv. Funct. Mater., 2017, 27(9), 1605017. https://doi.org/10.1002/adfm.201605017
  40. F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, Adv. Mater., 2014, 26(38), 6622-6628. https://doi.org/10.1002/adma.201402322
  41. D. Li, X. Li, S. Wang, Y. Zheng, L. Qiao, D. He, ACS Appl. Mater. Inter., 2014, 6(1), 648-654. https://doi.org/10.1021/am404756h
  42. Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci., 2012, 5(1), 5252-5256. https://doi.org/10.1039/C1EE02831F
  43. X. Xu, H. Tan, K. Xi, S. Ding, D. Yu, S. Cheng, G. Yang, X. Peng, A. Fakeeh, R. V. Kumar, Carbon, 2015, 84, 491-499. https://doi.org/10.1016/j.carbon.2014.12.040
  44. X. Yao, J. Kong, D. Zhou, C. Zhao, R. Zhou, X. Lu, Carbon, 2014, 79, 493-499. https://doi.org/10.1016/j.carbon.2014.08.007
  45. L. Qu, X. Hou, X. Huang, Q. Liang, Q. Ru, B. Wu, K.- H. Lam, ChemElectroChem, 2017, 4(12), 3148-3155. https://doi.org/10.1002/celc.201700862
  46. C. Gong, Y.-J. Bai, Y.-X. Qi, N. Lun, J. Feng, Electrochim. Acta, 2013, 90, 119-127. https://doi.org/10.1016/j.electacta.2012.11.128
  47. L. Lu, X. Jiao, J. Fan, W. Lei, Y. Ouyang, X. Xia, Z. Xue, Q. Hao, Electrochim. Acta, 2019, 295, 461-471. https://doi.org/10.1016/j.electacta.2018.10.139
  48. D. Cao, Z. Yao, J. Liu, J. Zhang, C. Li, Energy Storage Mater., 2018, 11, 152-160. https://doi.org/10.1016/j.ensm.2017.10.005
  49. F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang, Y. Yu, Adv. Funct. Mater., 2018, 28(18), 1800394. https://doi.org/10.1002/adfm.201800394
  50. J. Wang., J. Polleux., J. Lim., B. Dunn., J. Mater. Chem. C, 2007, 111, 14925-14931.
  51. J. Wang, C. Wang, M. Zhen, Chem. Eng. J., 2019, 356, 1-10. https://doi.org/10.1016/j.cej.2018.09.014
  52. C. Liao, S. Wu, Chem. Eng. J., 2019, 355, 805-814. https://doi.org/10.1016/j.cej.2018.08.141