• Title/Summary/Keyword: spin torque

Search Result 122, Processing Time 0.031 seconds

Optical measurement and analysis technique for spin-orbit torques (스핀-궤도 돌림힘의 광학적 측정 및 분석법)

  • Yun, Sang-Jun;Moon, Joon;Whang, Hyun-Seok;Choe, Sug-Bong
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.1-3
    • /
    • 2015
  • We demonstrate here an optical measurement technique to quantify the spin-orbit torques. The magnetization dynamics induced by the spin-orbit torques with a sinusoidal current injection is measured by use of polar magneto-optical Kerr effect. The measured signal is then analyzed based on the Landau-Lifhshitz-Gilbert equation with consideration of the spin-orbit torques. The present measurement technique is applied to Pd/Co/Pt films and then, the longitudinal and transverse components of the spin-orbit torques are successfully quantified. The present optical technique provides an alternative way to quantify the spin-orbit torques.

The Origin of the Spin-Orbit Alignment of Galaxy Pairs

  • Moon, Jun-Sung;An, Sung-Ho;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.28.3-29
    • /
    • 2021
  • Galaxies are not just randomly distributed in space; instead, a variety of galaxy alignments have been found over a wide range of scales. Such alignments are the outcome of the combined effect of interacting neighbors and the surrounding large-scale structure. Here, we focus on the spin-orbit alignment (SOA) of galaxy pairs, the dynamical coherence between the spin of a target galaxy and the orbital angular momentum of its neighbor. Based on a recent cosmological hydrodynamic simulation, the IllustrisTNG project, we identify paired galaxies with mass ratios from 1/10 to 10 at z = 0 and statistically analyze their spin-orbit angle distribution. We find a clear preference for prograde orientations (i.e., SOA), which is more prominent for closer pairs. The SOA is stronger for less massive targets in lower-density regions. The SOA witnessed at z = 0 has been developed progressively since z = 2. There is a clear positive correlation between the alignment strength and the interaction duration with its current neighbor. Our results suggest the scenario in which the SOA is developed mainly by interactions with a neighbor for an extended period of time, rather than by the primordial torque exerted by the large-scale structure.

  • PDF

First Principle Studies on Magnetism and Electronic Structure of Perovskite Structured CoFeX3 (X = O, F, S, Cl) (페로브스카이트 구조를 가지는 CoFeX3(X = O, F, S, Cl) 합금의 자성과 전자구조에 대한 제일원리계산)

  • Jekal, Soyoung;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.179-184
    • /
    • 2016
  • For an industrial spin-transfer torque (STT) MRAM, low switching current and high thermal stability are required, simultaneously. For this point of view, it is essential to find magnetic materials which satisfy high spin polarization and strong perpendicular magnetocrystalline anisotropy (MCA). In this paper, we investigate electronic structures and MCA energies of perovskite $CoFeX_3$ (X = O, F, S, Cl). For X = F and Cl, spin polarization at the Fermi level are 97 % and 96 %, respectively, which are close to a half metal. Furthermore, Co-terminated 5-monolayer (ML) $CoFeX_3$ (X = O, F, S, Cl) films show perpendicular MCA. In particular, the MCA energy of the Co-terminated $CoFeCl_3$ is about 1.0 meV/cell which is three times larger than that of a 5-ML CoFe film. Therefore, we expect to realize a magnetic material with high spin polarization and strong perpendicular MCA energy by utilizing group 6 and 7 elements in the periodic table, and to contribute to commercializing of the STT-MRAM.

Exchange Anisotropy of Polycrystalline Ferromagnetic/Antiferromagnetic Bilayers

  • Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.80-93
    • /
    • 2002
  • The role of magnetic anisotropy of the antiferromagnetic layer on the magnetization process of exchange coupled polycrystalline ferromagnetidantiferromagnetic bilayers is discussed. In order to elucidate the magnetic torque response of Ni-Fe/Mn-Ir bilayers, the single spin ensemble model is newly introduced, taking into account the two-dimensionally random distribution of the magnetic anisotropy axes of the antiferromagnetic grains. The mechanism of the reversible inducement of the exchange anisotropy along desirable directions by field cooling procedure is successfully explained with the new model. Unidirectional anisotropy constant, J$k$, of polycrystalline Ni-Fe/Mn-Ir and Co-Fe/Mn-Ir bilayers is investigated as functions of the chemical composition of both the ferromagnetic layer and the antiferromagnetic layer. The effects of microstructure and surface modification of the antiferromagnetic layer on JK are also discussed. As a notable result, an extra large value of J$k$, which exceeds 0.5 erg/cm$^2$, is obtained for $Co_{70}Fe_{30}Mn_{75}Ir_{25}$ bilayer with the ultra-thin (50${\AA}$∼100${\AA}$) Mn-Ir layer. The exchange anisotropy of $Co_{70}Fe_{30}$ 40 ${\AA}/Mn_{75}Ir_{25}$ 100 ${\AA}$ bilayer is stable for thermal annealing up to $400{^{\circ}C}$, which is sufficiently high for the application of spin valve magnetoresistive devices.

Study on the Elliptical Elastohydrodynamic Lubrication in the Toroidal Continuously Variable Transmission (가변 동력전달 장치에서의 타원 형상 점접촉 탄성유체윤활 연구)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.310-315
    • /
    • 2001
  • The most general feature of contact zone among the mechanical components is elliptical circle. In particular, continuously variable transmission (CVT) of toroidal type has elliptical shape of contact zone under the elastohydrodynamic lubrication condition, where the power is transmitted by the shearing the efluid. Due to the traction of the shear behaviors of lubricant over the small elliptical contact zone, high power of torque is transmitted. During the power transmission, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spinning. The spinning effect that is not common contact behavior in tribological components frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of elastohydrodynamic lubrication with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

  • PDF

An optimal design of the Kopp Ball Variator continuously variable transmission (Kopp Ball Variator 무단변속기의 최적설계)

  • 임경호;김두만
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.38-46
    • /
    • 1992
  • An optimal design technique for minimum power loss in Kopp Ball Variator Continuously Variable Transmission is developed. Kinematic analysis of traction drive contact is performed to find spin for Kopp Ball Variator, and traction force and torque are calculated from mathem atical model of traction drive contact. The objective function for optimal design is total power loss including contact loss and bearing losses. The design contraints are derived from energy balance for input and output power. The formulated optimal design problem is implemented to a non-linear programming algorithm to find minimum power loss. The performance of optimal ly designed Kopp Ball Variator shows that efficiency is increased about 5-10% compare to a commercial unit.

  • PDF

Efficiency Improvement for Concentrated Flux IPM Motors for Washing Machines

  • Yoon, Keun-Young;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1277-1282
    • /
    • 2014
  • Concentrated flux interior permanent magnet (CFIPM) motors have the advantage that their utilization of flux linkage is more efficient than that of general IPM motors and CFIPM motors are suitable for washing machine motors, which demand low-speed, high-torque specifications. However, low efficiency occurs in the low-speed high-torque mode considering the high-speed operation for spin mode. This paper proposes a magnet overhang structure between the rotor core that reduces leakage flux and improves efficiency for a CFIPM in wash mode. Optimization of the 3D design of magnet overhang structures is performed to improve the efficiency with the same quantity of permanent magnets. The validity of the optimal design is experimentally verified through the fabrication of prototypes.