• Title/Summary/Keyword: spin particle

Search Result 70, Processing Time 0.025 seconds

A Study on the Effect of the Vibration and Particle Generation of a Spin Coater on Thin Film Coating (회전박막제조기의 진동 및 입자발생이 박막제조에 미치는 영향에 관한 연구)

  • 허진욱;권태종;정진태;한창수;안강호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.31-36
    • /
    • 2001
  • A spin coater is a machine to coat wafer or LCD display with thin film. Vibration in the spin coater may be one of main troubles in the coating process. In this paper, we focus on the difference between two spin coaters. Vibration sources are identified by experimental approach and are compared to find the difference between the two spin coaters. Also, the particle concentration is observed by laser particle counter (LPC) for the two spin coaters, when the spin coaxers are working. It is also considered whether the defect rate is proportional to the particle concentration. The result shows that particle generation in the coating process is related to excessive vibration of the spin coater shaft and the particles influence the defect rate of the thin film product.

  • PDF

Particle Dispersion and Effect of Spin in the Turbulent Boundary Layer Flow (난류 경계층 유동에서 입자의 확산과 스핀의 영향)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we develope a dispersion model based on the Generalized Langevin Model. Thomson's well-mixed condition is the well known criterion to determine particle dispersion. But, it has 'non-uniqueness problem'. To resolve this, we adopt a turbulent model which is a new approach in this field of study. Our model was greatly simplified under the self-similarity condition, leaving model only two model constants $C_{0}$ and ${\gamma}$$_{5}$ that control the dispersion and spin which measures rotational property of the Lagrangian particle trajectory. We investigated the sign of spin as well as magnitude by using the Direct Numerical Simulation. Model calculations were performed on the neutrally stable boundary layer flow. We found that spin has weak effect on the particle dispersion but it shows the significant effect on the horizontal flux compared to the zero-spin model.

The Complex Permeability and Microwave Absorbing Characterisics of $Ni_{2-x}Zn_{x}Y$ - Rubber Composites ($Ni_{2-x}Zn_{x}Y$ - 고무 복합체의 복소투자율과 전파흡수특성)

  • 신재영;오재희;권형주
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 1995
  • The microwave absorbing characteristics and complex permeability of $Ni_{2-x}Zn_{x}Y$ - rubber composites with variation of composition and particle size were investigated. With a ferrite particle with a diameter of about $1\mu\textrm{m}$, only spin rotational resonance was observed. This behavior probably due to the particle being sufficiently small to approach single domain characteristics so that only spin rotations can occur. The first matching frequency, found in $Ni_{2-x}Zn_{x}Y$ - rubber composites, which was higher than that of spin rotational resonance, increased with spin rotational resonance frequency. It is also found that the second matching frequency is independent of spin rotational resonance frequency. Based on these findings, it could be concluded that the microwave absorbing characteristics were caused by only one type of resonance, the spin rotational resonance.

  • PDF

Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive (HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

Entanglement Generation by Using the Moving Spin (움직이는 스핀입자를 이용한 양자얽힘 생성 방법)

  • Lee, Hyuk-Jae
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.6-9
    • /
    • 2007
  • The generation of entanglement is a very important subject in the quantum computer. Here we suggest the method that generates entanglement between two spin-1/2 particles by using the third moving spin-1/2 particle. We use the $F\"{o}rster$ interaction and the exchange interaction to make the entangled state.

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

Spin-Flop of α-Fe2O3 Nano Particles (α-Fe2O3 나노 입자에서 Spin-Flop에 관한 연구)

  • Sur, Jung-Chul;Park, Chul-Jin;Choi, Jung-Wan;Gee, S.H.;Hong, Y.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.169-173
    • /
    • 2004
  • We have synthesized monodispersed $\alpha$-F $e_2$ $O_3$ nano particles to investigate the spin change during the Morin transition temperature( $T_{M}$). The particle size was founded to have a very uniform distribution of 80 nm by x-ray diffraction and size dispersion analyzer. The Mossbauer spectra between the 4.2 K and the room temperature show that $T_{M}$ was shifted and the spin states of Fe ion were changed with the particle size. The Morin transition temperature of bulk usually quoted in literature is 265 K but, it decreases with the size and no transition was found at the critical size down to 4.2K. The spin direction of 80 nm sized particles are normal to the hexagonal c-axis above the $T_{M}$ and are tilted about 28~29$^{\circ}$ below $T_{M}$, which is the [110] direction of rombohedral structure.

Aerosol Generation Mechanism for Cutting Fluid in Turning (선삭에서 절삭유 미립화 생성 메카니즘)

  • 박성호;고태조;김희술
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.179-184
    • /
    • 2001
  • The mechanism of the aerosol generation consists of spin-off, splash, and evaporation/condensation. Most researchers showed some theoretical model for predicting the particulate size and generation rate without cutting in turning operation. These models were based on the spin-off mechanism and verified good for modeling the process. However, in real machining, the cutting tool destructs the spin-off process, and the majority of the mist is due to splash. In this paper, we show some experimental evidence the aerosol generation mechanism should be explained with splash model as well as spin-off.

  • PDF

Experimental Verification of Aerosol Generation Mechanism for Cutting Fluid in Turning (선삭에서 절삭유 미립화 생성 메카니즘의 실험적 검증)

  • 고태조;오명석;박성호;김희술
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.93-99
    • /
    • 2002
  • The mechanism of the aerosol generation generally consists of spin-off, splash, and evaporation/condensation. Most researchers showed some theoretical model for predicting the particulate size and generation rate without real cutting in turning operation. These models were based on the spin-off mechanism, and verified good for modeling the process. However, in real machining, the cutting tool destroys the spin-off process, and the majority of the mist is due to splash. In this paper, we show some experimental evidence that the aerosol generation mechanism in real machining should be explained with splash model as well as spin-off.

On the modification of particle dispersion in isotropic turbulence by free rotation of particle (등방성 난류에서 입자의 회전에 의한 분산 특성의 변화)

  • Park, Yong-Nam;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2554-2557
    • /
    • 2008
  • Effect of a particle's spin is investigated numerically by considering the effect of lift occurring due to difference of rotations of a particle and of fluid such as the Saffman lift and Magnus force. These lift forces have been neglected in many previous works on particle-laden turbulence. The trajectory of particles can be changed by the lift forces, resulting in significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are examined of velocity, acceleration of solid particle and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are a little bit changed by particle's rotation. When a laden particle encounters with coherent structures during the motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near coherent structures.

  • PDF