• Title/Summary/Keyword: sphingomonas

Search Result 153, Processing Time 0.024 seconds

A Study of the Distribution of a Bacterial Community in Biological-Activated Carbon (BAC) (생물활성탄 부착세균 분포 실태에 관한 연구)

  • Park, Hong-Ki;Jung, Eun-Young;Cha, Dong-Jin;Kim, Jung-A;Bean, Jae-Hoon
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1237-1242
    • /
    • 2012
  • The use of biological-activated carbon (BAC) processes in water treatment involves biofiltration, which maximizes the bacteria's capabilities to remove organic matter. In this study, the distribution of the bacterial community was assessed in response to different types of BAC processes applied downstream in the Nakdong River. The bacterial biomass and activity were $1.20{\sim}34.0{\times}10^7$ CFU/g and 0.61~1.10 mg-C/$m^3{\cdot}hr$ in coal-based BAC, respectively. The attachment of the bacterial biomass and the removal efficiency of the organic carbon were greatest with the coal-based activated carbon. The bacteria attached to each activated carbon material were detected in the order of Pseudomonas genus, Chryseomonas genus, Flavobacterium genus, Alcaligenes genus, Acinetobacter genus, and Spingomona genus. Pseudomonas cepacia was the dominant species in the coal-based materials, and Chryseomonas luteola was the dominant species in the wood-based material.

Removal of Organic Load from Olive Washing Water by an Aerated Submerged Biofilter and Profiling of the Bacterial Community Involved in the Process

  • Pozo, Clementina;Rodelas, Belen;Martinez-Toledo, M. Victoria;Vilchez, Ramiro;Gonzalez-Lopez, Jesus
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.784-791
    • /
    • 2007
  • The present work aims to use a biofilter technology(aerated submerged filters) for the aerobic transformation at laboratory-scale of olive washing water(OWW) generated in the first steps of olive oil processing, as well as the genetic profiling and identification to the species level of the bacteria involved in the formation of the biofilm, by means of TGGE. Chemical parameters, such as biological oxygen demand at five days($BOD_5$) and chemical oxygen demand(COD), decreased markedly(up to 90 and 85%, respectively) by the biological treatment, and the efficiency of the process was significantly affected by aeration and inlet flow rates. The total polyphenol content of inlet OWW was only moderately reduced(around 50% decrease of the inlet content) after the biofilter treatment, under the conditions tested. Partial 16S rRNA genes were amplified using total DNA extracted from the biofilm and separated by TGGE. Sequences of isolated bands were mostly affiliated to the $\alpha-subclass$ of Proteobacteria, and often branched in the periphery of bacteria] genera commonly present in soil(Rhizobium, Reichenowia, Agrobacterium, and Sphingomonas). The data obtained by the experimentation at laboratory scale provided results that support the suitability of the submerged filter technology for the treatment of olive washing waters with the purpose of its reutilization.

Hydrogeochemistry and Microbial Community Structure of Groundwater in an Agricultural Area (농업지역 지하수의 수리지화학 및 미생물 군집 구조 분석)

  • Kim, Dong-Hun;Oh, Yong Hwa;Lee, Bong-Joo;Lee, Jung-Yun
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.61-75
    • /
    • 2022
  • This study evaluated the potential threat of agricultural and human activities to groundwater in the Noseong stream watershed, a typical agricultural area, through hydrogeochemical characteristics and microbial community analyses. The groundwater in the study area was Ca-SO4 and Ca-HCO3 types alluvial aquifer mainly used for agricultural and living purposes, and contained high levels of NO3- and Cl- ions generated from anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. Proteobacteria was most abundant in all samples with an average of 46.1% while Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant on an occasional basis. The prevalence of aerobic bacteria such as the genus Mycobacterium, Flavobacterium, and Sphingomonas suggests that groundwater was well connected with the surface layer. The potential pathogen Mycobacterium was detected in most samples, and other pathogenic bacteria were also widely distributed, indicating the vulnerability to contamination. Therefore, an integrated management system is required to secure the sustainable use of groundwater in agricultural areas with high groundwater dependence.

Bacterial Community Structure and Function Shift in Rhizosphere Soil of Tobacco Plants Infected by Meloidogyne incognita

  • Wenjie, Tong;Junying, Li;Wenfeng, Cong;Cuiping, Zhang;Zhaoli, Xu;Xiaolong, Chen;Min, Yang;Jiani, Liu;Lei, Yu;Xiaopeng, Deng
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.583-592
    • /
    • 2022
  • Root-knot nematode disease is a widespread and catastrophic disease of tobacco. However, little is known about the relationship between rhizosphere bacterial community and root-knot nematode disease. This study used 16S rRNA gene sequencing and PICRUSt to assess bacterial community structure and function changes in rhizosphere soil from Meloidogyne incognita-infected tobacco plants. We studied the rhizosphere bacterial community structure of M. incognita-infected and uninfected tobacco plants through a paired comparison design in two regions of tobacco planting area, Yuxi and Jiuxiang of Yunnan Province, southwest China. According to the findings, M. incognita infection can alter the bacterial population in the soil. Uninfested soil has more operational taxonomic unit numbers and richness than infested soil. Principal Coordinate Analysis revealed clear separations between bacterial communities from infested and uninfested soil, indicating that different infection conditions resulted in significantly different bacterial community structures in soils. Firmicutes was prevalent in infested soil, but Chloroflexi and Acidobacteria were prevalent in uninfested soil. Sphingomonas, Streptomyces, and Bradyrhizobium were the dominant bacteria genera, and their abundance were higher in infested soil. By PICRUSt analysis, some metabolism-related functions and signal transduction functions of the rhizosphere bacterial community in the M. incognita infection-tobacco plants had a higher relative abundance than those uninfected. As a result, rhizosphere soils from tobacco plants infected with M. incognita showed considerable bacterial community structure and function alterations.

Composition of Human Breast Milk Microbiota and Its Role in Children's Health

  • Notarbartolo, Veronica;Giuffre, Mario;Montante, Claudio;Corsello, Giovanni;Carta, Maurizio
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.194-210
    • /
    • 2022
  • Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.

Oral Administration of Mice with Cell Extracts of Recombinant Lactococcus lactis IL1403 Expressing Mouse Receptor Activator of NF-kB Ligand (RANKL)

  • Xuan, Biao;Park, Jongbin;Lee, Geun-Shik;Kim, Eun Bae
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.1061-1073
    • /
    • 2022
  • Receptor activator of NF-kB ligand (RANKL) is known to play a major role in bone metabolism and the immune system, and its recombinant form has been expressed in bacterial systems for research since the last two decades. However, most of these recombinant forms are used after purification or directly using living cells. Here, there were cell extracts of recombinant Lactococcus lactis expressing mouse RANKL (mRANKL) used to evaluate its biological activity in mice. Mice were divided into three groups that were fed phosphate-buffered saline (PBS), wild-type L. lactis IL1403 (WT_CE), and recombinant L. lactis expressing mRANKL (mRANKL_CE). The small intestinal transcriptome and fecal microbiome were then profiled. The biological activity of mRANKL_CE was confirmed by studying RANK-RANKL signaling in vitro and in vivo. For small intestinal transcriptome, differentially expressed genes (DEGs) were identified in the mRANKL_CE group, and no DEGs were found in the WT_CE group. In the PBS vs. mRANKL_CE gene enrichment analysis, upregulated genes were enriched for heat shock protein binding, regulation of bone resorption, and calcium ion binding. In the gut microbiome analysis, there were no critical changes among the three groups. However, Lactobacillus and Sphingomonas were more abundant in the mRANKL_CE group than in the other two groups. Our results indicate that cell extracts of mRANKL_CE can play an effective role without a significant impact on the intestine. This strategy may be useful for the development of protein drugs.

Distinct Bacterial and Fungal Communities Colonizing Waste Plastic Films Buried for More Than 20 Years in Four Landfill Sites in Korea

  • Joon-hui Chung;Jehyeong Yeon;Hoon Je Seong;Si-Hyun An;Da-Yeon Kim;Younggun Yoon;Hang-Yeon Weon;Jeong Jun Kim;Jae-Hyung Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1561-1572
    • /
    • 2022
  • Plastic pollution has been recognized as a serious environmental problem, and microbial degradation of plastics is a potential, environmentally friendly solution to this. Here, we analyzed and compared microbial communities on waste plastic films (WPFs) buried for long periods at four landfill sites with those in nearby soils to identify microbes with the potential to degrade plastics. Fourier-transform infrared spectroscopy spectra of these WPFs showed that most were polyethylene and had signs of oxidation, such as carbon-carbon double bonds, carbon-oxygen single bonds, or hydrogen-oxygen single bonds, but the presence of carbonyl groups was rare. The species richness and diversity of the bacterial and fungal communities on the films were generally lower than those in nearby soils. Principal coordinate analysis of the bacterial and fungal communities showed that their overall structures were determined by their geographical locations; however, the microbial communities on the films were generally different from those in the soils. For the pulled data from the four landfill sites, the relative abundances of Bradyrhizobiaceae, Pseudarthrobacter, Myxococcales, Sphingomonas, and Spartobacteria were higher on films than in soils at the bacterial genus level. At the species level, operational taxonomic units classified as Bradyrhizobiaceae and Pseudarthrobacter in bacteria and Mortierella in fungi were enriched on the films. PICRUSt analysis showed that the predicted functions related to amino acid and carbohydrate metabolism and xenobiotic degradation were more abundant on films than in soils. These results suggest that specific microbial groups were enriched on the WPFs and may be involved in plastic degradation.

Anti-Oomycete Activity and Pepper Root Colonization of Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 against Phytophthora capsici

  • Elena, Volynchikova;Ki Deok, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.123-135
    • /
    • 2023
  • Previously, Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 from a sequential screening procedure were proven to effectively control Phytophthora blight caused by Phytophthora capsici. In this study, we further investigated the anti-oomycete activities of these strains against mycelial growth, zoospore germination, and germ tube elongation of P. capsici. We also investigated root colonization ability of the bacterial strains in square dishes, including cell motility (swimming and swarming motilities) and biofilm formation. Both strains significantly inhibited mycelial growth in liquid and solid V8 juice media and M9 minimal media, zoospore germination, and germ tube elongation compared with Bacillus vallismortis EXTN-1 (positive biocontrol strain), Sphingomonas aquatilis KU408 (negative biocontrol strain), and MgSO4 solution (untreated control). In diluted (nutrient-deficient) V8 juice broth, the tested strain populations were maintained at >108 cells/ml, simultaneously providing mycelial inhibitory activity. Additionally, these strains colonized pepper roots at a 106 cells/ml concentration for 7 days. The root colonization of the strains was supported by strong swimming and swarming activities, biofilm formation, and chemotactic activity towards exudate components (amino acids, organic acids, and sugars) of pepper roots. Collectively, these results suggest that strains YJR13 and YJR92 can effectively suppress Phytophthora blight of pepper through direct anti-oomycete activities against mycelial growth, zoospore germination and germ tube elongation. Bacterial colonization of pepper roots may be mediated by cell motility and biofilm formation together with chemotaxis to root exudates.

Nodulation Experiment by Cross-Inoculation of Nitrogen-Fixing Bacteria Isolated from Root Nodules of Several Leguminous Plants

  • Ahyeon Cho;Alpana Joshi;Hor-Gil Hur;Ji-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.570-579
    • /
    • 2024
  • Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.

A report on 29 unrecorded bacterial species isolated from the Nakdonggang River, Republic of Korea

  • Ahyoung Choi;Ja Young Cho;Soo-Yeong Lee;Ji Young Jung;Kiwoon Baek;Seoni Hwang;Eui-Jin Kim;Jaeduk Goh
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.143-157
    • /
    • 2024
  • As part of the research program "Freshwater Prokaryotic Organisms Research and Discovery," freshwater samples were collected from the Nakdonggang River. After plating the samples on several culture media and incubating aerobically, approximately 900 bacterial strains were isolated and identified using 16S rRNA gene sequences. Among the bacterial isolates showing higher than 98.7% 16S rRNA gene sequence similarity with those of already confirmed bacterial species previously unreported in Korea, 29 strains were selected. These strains were phylogenetically diverse and belonged to 3 phyla, 6 classes, 13 orders, and 21 genera. At the genus level, these previously unreported species were found to be affiliated with Novosphingobium, Sphingomonas, Polymorphobacter, Croceibacterium, Devosia, Endobacterium, Agaricicola, Bradyrhizobium, Paracoccus, and Pseudotabrizicola of the class Alphaproteobacteria; Undibacterium, Azonexus, and Dechloromonas of the class Betaproteobacteria; Acinetobacter and Budvicia of the class Gammaproteobacteria; Streptomyces, Nocardioides, Mycobacterium, and Cellulomonas of the phylum Actinomycetota; Flavobacterium and Pedobacter of the phylum Bacteroidota. These species were further characterized by examining their Gram reaction, colony and cell morphologies, biochemical properties, and phylogenetic positions. Detailed descriptions of these 29 previously unreported species are provided.