• Title/Summary/Keyword: spherical particle

Search Result 675, Processing Time 0.027 seconds

Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses (다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구)

  • Won-Hee Ryu;Ji-Woo Choi;Hyo-Seok Yang;Hyun-Cheol Shin;Chang-Hoon Sim;Jae-Sang Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.43-57
    • /
    • 2023
  • The hypervelocity impact simulations of space objects and structures are performed using LS-DYNA. Space objects with spherical, conical, and hollow cylindrical shapes are modeled using the Smoothed Particle Hydrodynamics (SPH). The direct and indirect impact zones of a space structure are modeled using the SPH and finite element methods, respectively. The Johnson-Cook material model and Mie-Grüneisen Equation of State are used to represent the nonlinear behavior of metallic materials in hypervelocity impact. In the hypervelocity impact simulations, various impact conditions are considered, such as the shape of the space object, the thickness of the space structure, the impact angle, and the impact velocity. The shapes of debris clouds are quantitatively classified based on the geometric parameters. Conical space objects provide the worst debris clouds for all impact conditions.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Study on the Variation of Optical Properties of Asian Dust Plumes according to their Transport Routes and Source Regions using Multi-wavelength Raman LIDAR System (다파장 라만 라이다 시스템을 이용한 발원지 및 이동 경로에 따른 황사의 광학적 특성 변화 연구)

  • Shin, Sung-Kyun;Noh, Youngmin;Lee, Kwonho;Shin, Dongho;Kim, KwanChul;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.241-249
    • /
    • 2014
  • The continuous observations for atmospheric aerosol were carried out during 3 years (2009-2011) by using a multi-wavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea ($35.11^{\circ}N$, $126.54^{\circ}E$). The particle depolarization ratios were retrieved from the observations in order to distinguish the Asian dust layer. The vertical information of Asian dust layers were used as input parameter for the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for analysis of its backward trajectories. The source regions and transport pathways of the Asian dust layer were identified. The most frequent source region of Asian dust in Korea was Gobi desert during observation period in this study. The statistical analysis on the particle depolarization ratio of Asian dust was conducted according to their transport route in order to retrieve the variation of optical properties of Asian dust during long-range transport. The transport routes were classified into the Asian dust which was transported to observation site directly from the source regions, and the Asian dust which was passed over pollution regions of China. The particle depolarization ratios of Asian dust which were transported via industrial regions of China was ranged 0.07-0.1, whereas, the particle depolarization ratio of Asian dust which was transported directly from the source regions to observation site were comparably higher and ranged 0.11-0.15. It is considered that the pure Asian dust particle from source regions were mixed with pollution particles, which is likely to spherical particle, during transportation so that the values of particle depolarization of Asian dust mixed with pollution was decreased.

Characterization of Particulates Containing Naturally Occurring Radioactive Materials in Phosphate Processing Facility (인광석 취급 산업체에서 발생하는 천연방사성물질 함유 입자의 특성 평가)

  • Lim, HaYan;Choi, Won Chul;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Phosphate rock, phosphogypsum, and products in phosphate processing facility contain naturally occurring radioactive materials (NORM). Therefore, they may give rise to enhanced radiation dose to workers due to inhalation of airborne particulates. Internal dose due to particle inhalation varies depending on particle properties. The objective of the present study was to characterize particle properties at the largest phosphate processing facility in Korea. A cascade impactor was employed to sample airborne particulates at various processing areas in the plant. The collected samples were used for characterization of particle size distribution, particle concentration in the air, and shape analysis. Aerodynamic diameters of airborne particulates ranged 0.03-100 ${\mu}m$ with the highest concentration at the particle size range of 4.7-5.8 ${\mu}m$ (geometric mean = 5.22 ${\mu}m$) or 5.8-9.0 ${\mu}m$ (geometric mean = 7.22 ${\mu}m$). Particle concentrations in the air varied widely by sampling area up to more than two orders of magnitude. The large variation resulted from the variability of mechanical operations and building ventilations. The airborne particulates appeared as spheroids or rough spherical fragments across all sampling areas and sampled size intervals. Average mass densities of phosphate rocks, phosphogypsums, and fertilizers were 3.1-3.4, 2.1-2.6, and 1.7 $gcm^{-3}$, respectively. Radioactivity concentration of uranium series in phosphate rocks varied with country of origin, ranging 94-866 $Bqkg^{-1}$. Among the uranium series, uranium was mostly concentrated on products, including phosphoric acid or fertilizers whereas radium was concentrated on byproducts or phosphogypsum. No significant radioactivity of $^{226}Ra$ and $^{228}Ra$ were found in fertilizer. However, $^{40}K$ concentration in fertilizer was up to 5,000 Bq $g^{-1}$. The database established in this study can be used for the accurate risk assessment of workers due to inhalation of airborne particles containing NORM. In addition, the findings can be used as a basic data for development of safety standard and guide and for practical radiation safety management at the facility.

In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells

  • Preetam Raj, J.P;Purushothaman, M;Ameer, Khusro;Panicker, Shirly George
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields.

The Fabrication of Artificial Fine Aggregates Using Stone Sludge and Spent Bleaching Clay

  • Kim, Kangduk
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.492-497
    • /
    • 2014
  • Artificial fine aggregates (denoted AFA) were fabricated using spent bleaching clay (denoted SBC) generated from processed vegetable oil and stone sludge (denoted SS) produced from crushed aggregate manufacturing materials for use as functional construction materials. Each raw material was crushed to particle size finer than $150{\mu}m$, and fine spherical pellets of approximately 1 ~ 4 mm in diameter were prepared by a pelletizing process. The physical properties of the AFA were measured with different types of sintering equipment. A new type of vertical furnace that sinters fine aggregates in a fluidized bed at high temperatures was designed and tested. AFA sintered in a rotary kiln at $1125^{\circ}C$ showed a bulk density of $1.5g/cm^3$ and a water absorption of 16%. AFA sintered in the vertical furnace at $1125^{\circ}C$ showed a bulk density of $1.9g/cm^3$ and water absorption of 8.5%. The bulk density of the AFA sintered in the vertical furnace showed a bulk density 27% higher and water absorption 47% lower than those of AFA sintered in the rotary kiln.

Refinement Behavior of Magnesium Powder by Attrition Milling Under Different Condition (어트리션 볼밀링 조건 변화에 따른 마그네슘 분말의 미세화 거동)

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Kim, Jung-Han;Kim, Tae-Kyung;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.591-598
    • /
    • 2014
  • In this research, magnesium powder was prepared by gas atomizing. Refinement behaviors of magnesium powder produced under different conditions were investigated using a mechanical milling (attrition milling) process. Analyses were performed to assess the characterization and comparison of milled powder with different steel ball sizes and milling times. The powders were analyzed by field emission scanning electron microscope, apparent density and powder fluidity. The particle morphology of the Mg powders changed from spherical particles of feed metals to irregular oval particles, then plate type particles, with an increasing milling time. Because of the HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, which results in producing plate-type powders. An increase in ball size and the impact energy of the magnesium powder maximizes the effect of refinement. Furthermore, it is possible to improve the apparent density and fluidity according to the smoothness of the surface of the initial powder.

Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method (마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅)

  • Kim, Yoo-Jin;Yu, Ri;Park, Eun-Young;Pee, Jae-Hwan;Choi, Eui-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

Synthesis and Characterization of Yttrium-doped Core-Shell SiO2 Nanoparticles by Reverse Micelle and Sol-gel Processing

  • Kim, Jun-Seop;Chu, Min-Cheol;Cho, Seong-Jai;Bae, Dong-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.512-517
    • /
    • 2008
  • In this study, yttrium-doped $SiO_2$ nanoparticles are synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Spherical Y-doped $SiO_2$ nanoparticles with a uniform size distribution are prepared using selfassembly molecules in conjunction with the hydrolysis and condensation of organometallic precursors. The water/surfactant molar ratio influenced the Y-doped $SiO_2$ particles distribution of the core-shell composite particles and the distribution of Y doped $SiO_2$ particles was broadened as the water to surfactant ratio increased. The particle size of Y increase linearly as the $Y(NO_3)_3$ solution concentration increased. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The effects of synthesis parameters, such as the molar ratio of water to surfactant and the molar ratio of water to TEOS, are discussed.

Synthesis of Aluminum Nitride Powder from Aluminum Hydroxide by Carbothermal Reduction-Nitridation (알루미나 수화물로부터 탄소환원질화법에 의한 질화알루미늄 분말의 합성)

  • 황진명;정원중;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.893-901
    • /
    • 1994
  • In this study, AlN powder of fine particle size and of high purity was synthesized by the carbothermal reduction-nitridation of monodisperse, spherical Al(OH)3 which had been prepared by sol-gel method using Al(O-sec-C4H9)3 as the starting material. Depending on the mixing order and kinds of reducing agents, the optimum condition for the preparation of AlN was determined as follows. AlN single-phase was produced by the carbothermal reduction-nitridation of (1) Benzene-washed Al(OH)3 and the reducing agent, carbon, which was mixed in a ball mill: for 5 hours at 140$0^{\circ}C$ under NH3 atmosphere; (2) The mixture prepared by hydrolysis of alkoxide solution into which carbon had been dispersed beforehand: for 5 hours at 135$0^{\circ}C$ ; (3) Al(OH)3 Poly(furfuryl alcohol) composite powder: for 2.5 hours at 135$0^{\circ}C$; (4) The mixture of Al(OH)3 and polyacrylonitrile: for 5 hours at 140$0^{\circ}C$. Addition of CaF2 increased the nitridation rate when carbon or polyacrylonitrile was used as the reducing agent; but it had no effect on the nitridation rate when furfuryl alcohol was used as the reducing agent.

  • PDF