• Title/Summary/Keyword: spherical dispersion measure

Search Result 2, Processing Time 0.019 seconds

MEASURES FOR STABILITY OF SLOPE ESTIMATION ON THE SECOND ORDER RESPONSE SURFACE AND EQUALLY-STABLE SLOPE ROTATABILITY

  • Park, Sung H.;Kang, Ho-Seog;Kang, Kee-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.337-357
    • /
    • 2003
  • This paper introduces new measures for the stability of slope estimation on the second order response surface at a point and on a sphere. As a measure of point stability of slope estimation, we suggest a point dispersion measure of slope variances over all directions at a point. A spherical dispersion measure is also proposed as a measure of spherical stability of slope estimation on each sphere. Some designs are studied to explore the usefulness of the proposed measures. Using the point dispersion measure, another concept of slope rotatability called equally-stable slope rotatability is proposed as a useful property of response surface designs. We provide a set of conditions for a design to have equally-stable slope rotatability.

Rheological characteristics of non-spherical graphite suspensions

  • Mustafa, Hiromoto Usui;Ishizuki, Masanari;Shinge, Ibuki;Suzuki, Hiroshi
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • Since the microstructure of functional thin films depends on the dispersion characteristics of dense slurry, it is important to control the agglomerative nature of slurries under processing. The present authors have been discussing the model prediction of agglomerative nature and local rate of agglomeration in dense suspensions. The experiments have been peformed under shear flow using the nearly spherical and oblate type graphite particles. In this study, the experiment has been conducted using water and glycerol as dispersion media. Stress control type rheometer was used to measure the slurry rheology. Local agglomeration of graphite particles has been predicted by using Usui's model. The experimental results show that both the shape and slurry processing method affect on the local dispersion condition. The agglomeration formed by oblate type graphite particles seems to be more difficult to break up than that of spherical particles.