• Title/Summary/Keyword: spherical beads

Search Result 48, Processing Time 0.022 seconds

Properties of Bubble used in Concrete ac cording to Change in Manufacturing Condition

  • Byoungil Kim
    • Architectural research
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2024
  • This study is a research investigation into the properties of bubbles that affect the characteristics of foamed concrete during its production. The study examined the properties of bubbles based on the manufacturing conditions. To investigate these properties, the selected experimental factors included bead size, the length/diameter ratio of the bubble-generating tube, and compressed air. The experimental design used a design of experiments, and the test results were analyzed using analysis of variance. The foaming agent used to generate bubbles was AES (Alcohol Ethoxy Sulfate), and the method employed for bubble manufacture was the pre-foaming method. In the test results, a significant factor affecting the foaming rate of bubbles was the bead size; the highest foaming rate was observed when using 2mm beads. Bead size also primarily influenced the volume change of the aqueous solution, while other factors did not affect the foaming rate and volume change. None of the factors affected the change in bubble size, but compressed air was considered the main factor affecting bubble size and its change. The foaming rate and volume change of the aqueous solution showed a high correlation with each other. Spherical bubbles in the early stage eventually transformed into angular bubbles. Moreover, over time, it was observed that the bubble size increased.

The Frequency Distribution of Void Ratio of Granular Materials (입상체시료의 공극비의 빈도분포)

  • Do, Deok-Hyeon;Go, Jae-Man;O, Gyu-Tae
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.5-18
    • /
    • 1988
  • This study aims at scrutinizing the relationships among the frequency distribution of voids the relative density and the shear strength for the three types of different granular materials. The main results summarized are as follows: (1) The frequency distribution of void ratio of glass beads can be approximated by the negative exponential distribution proposed by Shahinpoor (1981), while as the particle shape changes from spherical to angular the frequency of the denser voids decreases and the distributions are well presented by the beta distribution. (2) For all materials, the standard deviation of void ratio increases with decreasing both the relative density of the material and sphericity of particle. (3) It was found that shear strength of the material was a function of not only the mean void ratio and its standard deviation, but also of the shape of the probability density function of the distribution of void ratio. The more the frequency distribution of void inclines towards the denser voids, the higher the shear strength of the material and vice versa.

  • PDF

Large eddy simulation of flow over a wooded building complex

  • Rehm, R.G.;McGrattan, K.B.;Baum, H.R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.291-300
    • /
    • 2002
  • An efficient large eddy simulation algorithm is used to compute surface pressure distributions on an eleven story (target) building on the NIST campus. Local meteorology, neighboring buildings, topography and large vegetation (trees) all play an important part in determining the flows and therefore the pressures experienced by the target. The wind profile imposed at the upstream surface of the computational domain follows a power law with an exponent representing a suburban terrain. This profile accounts for the flow retardation due to friction from the surface of the earth, but does not include fluctuations that would naturally occur in this flow. The effect of neighboring buildings on the time dependent surface pressures experienced by the target is examined. Comparison of the pressure fluctuations on the single target building alone with those on the target building in situ show that, owing to vortices shed by the upstream buildings, fluctuations are larger when such buildings are present. Even when buildings are lateral to or behind the target, the pressure disturbances generate significantly different flows around this building. A simple grid-free mathematical model of a tree is presented in which the trunk and the branches are each represented by a collection of spherical particles strung together like beads on a string. The drag from the tree, determined as the sum of the drags of the component particles, produces an oscillatory, spreading wake of slower fluid, suggesting that the behavior of trees as wind breakers can be modeled usefully.

Alum Floc Attachment in Granular Media Filtration (입상여과에서 액반플럭의 부착)

  • Kim, Jinkeun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.625-630
    • /
    • 2004
  • Granular media filtration is used almost universally as the last particle removal process in conventional water treatment plants. Therefore, superb particle removal efficiency is needed during this process to ensure a high quality of drinking water. However, every particle can not be removed during granular media filtration. Besides the pattern of particle attachment is different depending on physicochemical aspects of particles and suspension. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5) and alum coagulation was used to destabilize particles. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. More favorable particles, i.e., particles with smaller surface charge, were well attached to the collectors especially during the early stage of filtration when zeta potential of particles and collectors are both negative. This selective attachment of the lower charged particles caused the zeta potential distribution (ZPD) of the effluent to move to a more negative range. On the other hand, the ZPDs of the effluent moved from more positive to less positive when the surface charge of particles was positive and this result was thought to be caused by ion transfer between particles and collectors.

Remediation of Heavy Metal Contaminated Groundwater by Using the Biocarrier with Dead Bacillus sp. B1 and Polysulfone (Bacillus sp. B1 사균과 Polysulfone으로 이루어진 미생물 담체를 이용한 중금속 오염 지하수 정화)

  • Lee, Min-Hee;Lee, Ji-Young;Wang, Soo-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.555-564
    • /
    • 2010
  • Remediation process by using the bio-carrier (beads) with dead Bacillus sp. B1 and polysulfone was investigated for heavy metal contaminated groundwater. Sorption batch experiments using the bio-carrier were performed to quantify the heavy metal removal efficiencies from the contaminated solution. The analyses using SEM/EDS and TEM for the structure and the characteristic of precipitates on/inside the beads were also conducted to understand the sorption mechanism by the bio-carrier. Various amounts of freeze-dried dead Bacillus sp. B1 were mixed with polysulfone + DMF(N,N-dimethylformamide) solution to produce the bio-carrier (beads; less than 2mm in diameter) and 5% of Bacillus sp. B1 in the bio-carrier was optimal for Pb removal in the solution. The removal efficiency ratings of the bio-carrier for Pb, Cu and Cd were greater than 80% after adding 2g of bio-carrier in 50ml of aqueous solution (<10mg/L of each heavy metal concentration). Reaction time of the bio-carrier was very fast and most of the sorption reaction for heavy metals were completed within few hours. Batch experiments were duplicated at various pH conditions of aqueous solutions and Cu and Pb removal efficiencies highly maintained at wide pH ranges (pH 2-12), suggesting that the bio-carrier can be useful to clean up the acidic waste water such as AMD. From SEM/EDS and TEM analyses, it was observed that the bio-carrier was spherical shape and was overlapped by many porous layers. During the sorption experiment, Pb was crystallized on the surface of porous layers and also was mainly concentrated at the boundary of Bacillus sp. B1 stroma and polysulfone substrate, showing that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers are excellent biosorbents for the removal of heavy metal ions from groundwater.

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

Preparation of Copoly(styrene/butyl methacrylate) Beads and Composite Particles containing Carbon Black with Hydrophobic Silica as a Stabilizer in Aqueous Solution (수용액에서의 소수성실리카를 이용한 스티렌/부틸메타크릴레이트 입자 및 카본블랙을 함유한 복합체 입자의 합성)

  • Chung, Kyung-Ho;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • A suspension copolymerization of styrene and butyl methacrylate (BMA) in the aqueous phase was conducted at a selected temperature between 65 and $95^{\circ}C$. Hydrophobic silica was selected as a stabilizer and azobisisobutyronitrile (AIBN) as an initiator. Optimum dispersion of silica in water was obtained at pH 10 while polymerization reaction was run at pH 7. TGA and EDS measurements revealed that 90% of silica functioned as a stabilizer and 10% were incorporated into polymeric particles. Average particle diameter decreased with increasing amounts of stabilizer. Molecular weights displayed an increase when the stabilizer concentration reached 1.67 wt%. An increase in the initiator concentration and/or reaction temperature raised the reaction rate but decreased molecular weights. Particle diameter was nearly independent of the initiator concentration and reaction temperature. An increase in the BMA proportion decreased the glass transition temperature and increased the particle diameter with irregularity in shape. Incorporation of carbon black into the particles composed of styrene and BMA prolonged the reaction time before reaching completion. We have confirmed that a suspension copolymerization of styrene and BMA with hydrophobic silica as a stabilizer can produce spherical composite particles with $1-30{\mu}m$ in diameter containing carbon black.

Preparation of Polystyrene Beads by Suspension Polymerization with Hydrophobic Silica as a Stabilizer in Aqueous Solution (소수성 실리카를 안정제로 이용하는 수용액 상에서의 현탁중합법에 의한 폴리스티렌 입자 합성)

  • Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.498-504
    • /
    • 2006
  • A suspension polymerization of styrene In aqueous phase was employed to study if polystyrene particles ranging from 1 to $20{\mu}m$ can be produced. Hydrophobic silica was selected as a stabilizer and azo-bisisobutyronitrile (AIBN) as an initiator. Polymerization reaction was carried out at a selected temperature in the range of $65{\sim}95^{\circ}C$. Stabilizer concentration was varied from 0.17 to 3.33 wt% compared to the water while the concentration of the initiator was raised from 0.13 to 6.0 wt% compared to the monomer. Dispersion of hydrophobic silica into the water phase was achieved by precise control of pH. Optimum dispersion of silica was obtained at pH 10. Average particle diameter decreased with increasing amounts of stabilizer concentration initially, exhibiting the minimum average diameter at 1.67 wt% of stabilizer concentration, after which it started to Increase. It is speculated that an excessive presence of stabilizer encouraged a secondary reaction in the reaction medium, which led to particle agglomeration, and as a result an increase in average particle diameter. Molecular weight was found to be independent of stabilizer concentration between 0.13 and 1.00 wt% whereas, it increased when stabilizer concentration exceeded 1.67 wt%. Variation of molecular weight was probably caused by the reduced activity and efficiency of initiator due to the high concentration of silica, and the secondary reaction in the reaction medium, as well. An increase in the Initiator concentration and/or reaction temperature resulted in an increase in both reaction rate and particle diameter. Consequently, we have confirmed that spherical polystyrene particles with $1{\sim}20{\mu}m$ in diameter can be prepared by careful selection of the concentration of stabilizer, initiator, pH and reaction temperature.