DOI QR코드

DOI QR Code

Preparation of Copoly(styrene/butyl methacrylate) Beads and Composite Particles containing Carbon Black with Hydrophobic Silica as a Stabilizer in Aqueous Solution

수용액에서의 소수성실리카를 이용한 스티렌/부틸메타크릴레이트 입자 및 카본블랙을 함유한 복합체 입자의 합성

  • Received : 2011.12.26
  • Accepted : 2012.02.29
  • Published : 2012.03.31

Abstract

A suspension copolymerization of styrene and butyl methacrylate (BMA) in the aqueous phase was conducted at a selected temperature between 65 and $95^{\circ}C$. Hydrophobic silica was selected as a stabilizer and azobisisobutyronitrile (AIBN) as an initiator. Optimum dispersion of silica in water was obtained at pH 10 while polymerization reaction was run at pH 7. TGA and EDS measurements revealed that 90% of silica functioned as a stabilizer and 10% were incorporated into polymeric particles. Average particle diameter decreased with increasing amounts of stabilizer. Molecular weights displayed an increase when the stabilizer concentration reached 1.67 wt%. An increase in the initiator concentration and/or reaction temperature raised the reaction rate but decreased molecular weights. Particle diameter was nearly independent of the initiator concentration and reaction temperature. An increase in the BMA proportion decreased the glass transition temperature and increased the particle diameter with irregularity in shape. Incorporation of carbon black into the particles composed of styrene and BMA prolonged the reaction time before reaching completion. We have confirmed that a suspension copolymerization of styrene and BMA with hydrophobic silica as a stabilizer can produce spherical composite particles with $1-30{\mu}m$ in diameter containing carbon black.

물을 반응매체로 하고 스티렌과 부틸메타크릴레이트 (BMA)를 단량체로 하여 $65^{\circ}C$에서 $95^{\circ}C$ 사이의 선택된 온도에서 현탁중합을 실시하였다. 소수성 실리카를 안정제로, azobisisobutyronirile (AIBN)을 개시제로 선택하였다. 안정제의 최적 분산은 pH 10에서 이루어졌으며 반응은 pH 7에서 진행하였다. TGA 및 EDS 측정으로 사용한 실리카의 90%는 안정제로 10%는 입자 내로 유입되는 것으로 분석되었다. 안정제의 농도가 증가할수록 평균입경은 감소하였다. 분자량은 안정제의 농도가 1.67 wt%에 이르며 증가하였다. 개시제의 농도 및/혹은 반응온도의 상승에 따라 반응속도는 증가하였으나 분자량은 감소하였다. 입자의 입경은 개시제의 농도 및 반응온도에 거의 무관하였다. BMA의 비가 증가하면서 유리전이온도는 감소하였으며 불규칙한 형상의 입자가 증가하였다. 카본블랙을 함유하는 스티렌/BMA의 중합반응은 반응완료에 보다 많은 시간이 소요되었다. 소수성 실리카를 안정제로 하는 현탁중합반응을 이용하여 카본블랙을 함유하는 평균입경이 $1-30{\mu}m$의 구형 폴리(스티렌-BMA) 공중합체 복합체 입자를 합성할 수 있다는 사실을 확인하였다.

Keywords

References

  1. Y. Jin, Y. Zhu, X. Yang, H. Jiang, and C. Li, "In Situ Synthesis of sulfide-coated Polystyrene Composites for the Fabrication of Photonic Crystals", J. Colloid Inter. Sci., 301, 130 (2006). https://doi.org/10.1016/j.jcis.2006.04.038
  2. S. Zhang, X. W. Zhao, H. Xu, R. Zhu, and Z. Z. Gu, "Fabrication of Photonic Crystals with Nigrosine-doped Poly (MMA-co-DVB-co-MAA) Particles", J. Colloid Inter Sci., 316, 168 (2006). https://doi.org/10.1016/j.jcis.2007.07.069
  3. A. M. Hillery, "Microparticulate Delivery Systems: Potential Drug/Vaccine Carriers via Mucosal Routes", Pharm. Sci. Tech. Today, 1-2, 69 (1998). https://doi.org/10.1016/S1461-5347(98)00024-8
  4. J. Liang, F. Svec, and J. M. Frechet, "Preparation and Functionalization of Reactive Monodisperse Macroporous Poly(chloromethylstyrene-co-styrene-co-divinylbenzene) Beads by a Staged Templated Suspension Polymerization", J. Polym. Sci.: Part A: Polym. Chem., 33, 2639 (1995). https://doi.org/10.1002/pola.1995.080331510
  5. A. N. Shipway, "Colloids and Colloids Assemblies - Synthesis, Modification, Organization and Utilization of Colloid Particles Ed. F. Caruso", Chemphyschem-Weinheim, 5-11, 1805 (2004).
  6. S. Omi, K. Fujiwara, M. Nagai, G. Ma, and A. Nakano, "Study of Particle Growth by Seed Emulsion Polymerization with Counter-charged Monomer and Initiator System", Colloids and Surfaces, 153, 165 (1999). https://doi.org/10.1016/S0927-7757(98)00439-7
  7. I. Noda, T. Kamoto, and M. Yamada, "Size-Controlling Synthesis of Narrowly Distributed Particles of Methylsilsesquioxane Derivatives", Chem. Mater., 12, 1708 (2000). https://doi.org/10.1021/cm000013b
  8. M. S. Kim, S. K. Kim, J. Y. Lee, S. H. Cho, K. Lee, J. Kim, and S. Lee, "Synthesis of Polystyrene Nanoparticles with Monodisperse Size Distribution and Positive Surface Charge Using Metal Stearates", Macromol. Res., 16-2, 178 (2008) https://doi.org/10.1007/BF03218848
  9. C. Ma, I. Taniguchi, M. Miyamoto, and Y. Kimura, "Formation of Stable Nanoparticles of Poly(phenyl/methylsilsesquioxane) in Aqueous Solution", Polymer J., 35-3, 270 (2003). https://doi.org/10.1295/polymj.35.270
  10. C. Ma and Y. Kimura, "Preparation of Nano-particles of Poly(phenylsilsesquioxane)s by Emulsion Polycondensation of Phenylsilanetriol Formed in Aqueous Solution", Polymer J., 34-9, 709 (2002). https://doi.org/10.1295/polymj.34.709
  11. J. Hearn, M. C. Wilkinson, A. R. Goodall and M. Chainey, "Kinetics of the Surfactant-Free Emulsion Polymerization of Styrene: The Post Nucleation Stage", J. Polym. Sci., 23, 1869 (1985).
  12. Z. Song and G. W. Poehlein, "Kinetics of Emulsifier-Free Emulsion Polymerization of Styrene", J. Polym. Sci.: Polym. Chem., 28-9, 2359 (1990). https://doi.org/10.1002/pola.1990.080280911
  13. J. L. Guillaume, C. Pichot and J. Guillot, "Emulsifier-Free Emulsion Copolymerization of Styrene and Butyl Acrylate. I.* Kinetic Studies in the Absence of Sulfactant", J. Polym. Sci.: Polym. Chem., 28, 119 (1990). https://doi.org/10.1002/pola.1990.080280109
  14. K. J. O'Callaghan, A. J. Paine, and A. Rudin, "Mixed Initiator Approach to the Surfactant-Free Semicontinuous Emulsion Polymerization of Large MMA/BA Particles", J. Appl. Polym. Sci., 58, 2047 (1995). https://doi.org/10.1002/app.1995.070581116
  15. T. Tranrisever, O. Okay, and C. Soenmezoglu, "Kinetics of Emulsifier-Free Emulsion Polymerization of MEthyl Methacrylate", J. Appl. Polym. Sci., 61, 485 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<485::AID-APP11>3.0.CO;2-0
  16. Z. Xu, C. Yi, G. Lu, J. Zhang, and S. Cheng, "Styrene-Butyl Acrylate-N,N-Dimethyl N-Butyl N-Methacrylamidino Propyl Ammonium Bromide Emulsifier-free Emulsion Copolymierzation", Polym. Inter., 44, 149 (1997). https://doi.org/10.1002/(SICI)1097-0126(199710)44:2<149::AID-PI836>3.0.CO;2-U
  17. R. Olayo, E. Garcia, Garcia-Corichi, L. Sanchez-vazquez, and J. Alvarez, "Poly(vinyl alcohol) as a Stabilizer in the Suspension Polymerizaton of Styrene: The Effect of the Molecular Weight", J. Appl. Sci., 67, 71 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<71::AID-APP8>3.0.CO;2-L
  18. G. Odian, "Principles of Polymerization, 4th ed.", p. 298, Wiley Interscience, New York (2004).
  19. Y. Taguchi, K. Hosogai, and M. Tanaka, "Effect of Dry Powder Preparation Conditions on Polymer Particles in Suspension Polymerization", J. Nihon Chem. Eng., 25-5, 758 (1999).
  20. R. Murakami, H. Hachisako, K. Yamada, and Y. Motozato, "Preparation of Micron-Sized Poly(vinyl acetate) Particles by Suspension Polymerization Using Poly(vinyl alcohol) -Borate Complex Stabilizer", Polymer J., 25-2, 205 (1993). https://doi.org/10.1295/polymj.25.205
  21. S. Shaghaghi and A. R. Mahdavian, "The Effect of Sodium Dodecyl Benzene Sulfonate on Particle Size in Suspension Polymerization of Styrene: A New Investigation", Polym. Plas. Tech. Eng, 45, 109 (2006). https://doi.org/10.1080/03602550500373659
  22. Y. M. Abu-Ayana and R. M. Mohsen, "Study of Some Variables Affecting Particle Size Distribution of Suspension Polymerization of Methyl Methacrylate", Polym. Plas. Tech. Eng., 44, 1515 (2005).
  23. S. S. Kim, T. S. Park, B. C. Shin, and Y. B. Kim, "Polymethyl methacrylate/montmorillonite nanocomposite beads through a suspension polymerization-derived process", J. Appl. Polym. Sci., 97, 2340 (2005). https://doi.org/10.1002/app.21696
  24. N. Sawatari, M. Fukuda, Y. Taguchi, and M. Tanaka, "The Effect of Surface Treatment of Magnetite Powder on a Structure of Composite Particles Prepared by Suspension Polymerization", J. Chem. Eng. Japan, 37-6, 731 (2004). https://doi.org/10.1252/jcej.37.731
  25. M. Park, Polymer(Korea), "Preparation of Polystyrene Beads by Suspension Polymerization with Hydrophobic Silica as a Stabilizer in Aqueous Solution", 30-6, 498 (2006).
  26. J. Moon and M. Park, Polymer (Korea), "Suspension Polymerization with Hydrophobic Silica as a Stabilizer III. Poly(butyl methacrylate) Composite Particles Containing Carbon Black", 33-5, 477 (2009).
  27. Nippon Aerosil Co., LtD., "Introduction of Aerosil Products" (2005).
  28. R. K. Iler, "The Chemistry of Silica", p. 60-61, John Wiley & Sons, New York (1978).
  29. G. Odian, "Principles of Polymerization, 4th ed.", p. 236, Wiley Interscience, New York (2004).
  30. J. Brandrup and E. Immergut, "Polymer Handbook, 3rd ed.", p. 70 & 75, Wiley Interscience, New York (1989).
  31. D. Li, N. Li, and R. A. Hutchinson, "High-Temperature Free Radical Copolymerization of Styrene and Btuyl Methacrylate with Depropagation and Penultimate Kinetic Effects", Macrolmolecules., 39-13, 4366 (2006). https://doi.org/10.1021/ma060411l
  32. G. Odian, "Principles of Polymerization, 4th ed.", p. 274, Wiley Interscience, New York (2004).
  33. H. Mark, N. Bikales, C. Overberger, and G. Menges, "Encyclopedia of Polym. Sci. & Eng, 2nd ed., Vol. 15", page 560 (1989).