• Title/Summary/Keyword: spent fuel disposal

Search Result 202, Processing Time 0.028 seconds

A Nonlinear Structural Analysis for a Composite Structure Composed of Spent Nuclear Fuel Disposal Canister and Bentonite Buffer: Symmetric Rock Movement (고준위폐기물 처분용기와 벤토나이트 버퍼로 이루어진 복합구조물에 대한 비선형 구조해석: 대칭 암반 전단력)

  • 권영주;최석호;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • In this paper, a nonlinear structural analysis for the composite structure composed of the spent nuclear fuel disposal canister and the 50㎝ thick bentonite buffer is carried out to predict the collapse of the canister while the horizontal symmetric sudden rock movement of 10㎝ is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Elastoplastic material model is adopted. Drucket-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the canister(cast iron, copper). Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffet, the canister structure still endures elastic small strains and stresses below the yield strength. Hence, the 50㎝ thick bentonite buffet can protect the canister safely against the 10㎝ sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the canister structure due to the shear deformation of the bentonite buffer.

Fuel Cycle Analysis of Heavy Water-Moderated Reactor System

  • Paik, In-Kul;Kim, Jin-Soo;Lee, Chang-Kun;Chung, Chang-Hyun;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.15-31
    • /
    • 1977
  • New conception of batch and period is defined appropriate for the on-power refuelling scheme of a heavy water-moderated reactor, A computer code (“HWRCOST”) is developed using nuclear fuel cycle economic equations based on the continuous energy calculation method. The fuel cycle cost of the CANDU-PHW reactor is calculated and sensitivity analyses are performed with variation of uranium ore price, fabrication cost, spent fuel permanent disposal expenses, and capacity fctor.

  • PDF

Cross-verified Measurement of Sulfide Concentration in Anaerobic Conditions Using Spectroscopic, Electrochemical, and Mass Spectrometric Methods

  • Nakkyu Chae;Samuel Park;Sungyeol Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.43-53
    • /
    • 2023
  • Sulfide concentrations critically affect worker safety and the integrities of underground facilities, such as deep geological repositories for spent nuclear fuel. Sulfide is highly sensitive to oxygen, which can oxidize sulfide to sulfate. This can hinder precise measurement of the sulfide concentration. Hence, a literature review was conducted, which revealed that two methods are commonly used: the methylene blue and sulfide ion-selective electrode (ISE) methods. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used for comparison with the two methods. The sulfide ISE method was found to be superior as it yielded results with a higher degree of accuracy and involved fewer procedures for quantification of the sulfide concentration in solution. ICP-OES results can be distorted significantly when sulfide is present in solution owing to the formation of H2S gas in the ICP-OES nebulizer. Therefore, the ICP-OES must be used with caution when quantifying underground water to prevent any distortion in the measured results. The results also suggest important measures to avoid problems when using ICP-OES for site selection. Furthermore, the sulfide ISE method is useful in determining sulfide concentrations in the field to predict the lifetime of disposal canisters of spent nuclear fuel in deep geological repositories and other industries.

Projection and Burnup Trends of Spent Nuclear Fuel in Korea (국내 사용후핵연료 현황 분석)

  • 조동건;최종원;이희환
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.261-267
    • /
    • 2004
  • Inventories, projections, and characteristics of spent nuclear fuel(SNF) generated from domestic nuclear power plants were updated to support high-level waste disposal system design. The historical and projected inventory by the end 2055 is expected to be 20,500 and 14,800MTU for PWR and CANDU spent nuclear fuel, respectively The ratio of quantity for TEX>$17{\times}17$ SNF was shown to be 0.6 as of 2003. The amount of TEX>$17{\times}17$ SNF, however, will be less than that of TEX>$16{\times}16$ KSFA after 2012, while the quantity of TEX>$16{\times}16$ KSFA will reach to 70% of the total spent fuels in the 2055. Average turnup of SNF revealed ~36GWD/MTU and ~40GWD/MTU for the period of 1994-1999 and 2000-2003, respectively. It is expected that the average burnup of SNF will exceed 45GWD/MTU at the end of 2000's. Therefore, it seems reasonable to use the TEX>$17{\times}17$ 4.5w/o, 45GWD/MTU as the Reference SNF at present state. The TEX>$16{\times}16$ KSFA 4.5w/o, 55GWD/MTU, however, should be Reference SNF after ~2010.

  • PDF

Feasibility Study of a Device for Decladding and Dry Pulverizing/Mixing Spent Fuel (사용후핵연료의 탈피복 및 건식 분말화/혼합 장치의 타당성 분석)

  • 정재후;윤지섭;홍동회;김영환;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.840-843
    • /
    • 2002
  • The dry pulverizing/Mixing device is used to deal with the spent fuels for the safe disposal. The separated pellets from hulls by a slitting device are put and oxidized from UO$_2$ solid pellet to U$_3$O$\_$8/ powder in the device. The device have been developed based on a voloxidation method which is one of several dry de-cladding methods. We have benchmarked dry de-cladding methods, analyzed applicability to the advanced spent fuel management process, integrated and compared several configuration, and finally derived detailed specifications proper to requirements for the device. Also, thermal characteristics of the device such as thermal stress and strain have been analyzed by the commercial software, 1-DEAS, and the reliability of the results have been verified by the KOLAS(Korea Laboratory Accreditation Scheme). The UO$_2$ solid pellets are put in the device which has a capacity of 20 kgHM per a batch, heated up about 600$^{\circ}C$ in the air environment. Then, the UO$_2$ solid pellets are oxidized into the U$_3$O$\_$8/ powder, and the powder is collected in a special vessel. The device has been designed and developed as fellows: the multi-staged fine hole meshes are used to reduce the size of the powder gradually, heat and air(oxygen) are supplied continuously to reduce the reaction time, and slight vibration effect are applied to collect powder cling to the device.

  • PDF

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.

Design, Manufacturing, and Performance estimation of a Disposal Canister for the Ceramic Waste from Pyroprocessing (파이로 공정 세라믹 폐기물을 위한 처분용기의 설계, 제작 방안, 그리고 기능 평가)

  • Lee, Minsoo;Choi, Heui-Joo;Lee, Jong-Youl;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.209-218
    • /
    • 2012
  • A pyroprocess is currently being developed by KAERI to cope with a highly accumulated spent nuclear fuel in Korea. The pyroprocess produces a certain amount of high-level radioactive waste (HLW), which is solidified by a ceramic binder. The produced ceramic waste will be confined in a secure disposal canister and then placed in a deep geologic formation so as not to contaminate human environment. In this paper, the development of a disposal canister was overviewed by discussing mainly its design premises, constitution, manufacturing methods, corrosion resistance in a deep geologic environment, radiation shielding, and structural stability. The disposal canister should be safe from thermal, chemical, mechanical, and biological invasions for a very long time so as not to release any kind of radionuclides.

Spent Nuclear Fuel Management in South Korea: Current Status and the Way Forward (사용후핵연료 관리 현안 및 정책 제언)

  • Hwang, Yongsoo;Chang, Sunyoung;Han, Jae-Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.312-323
    • /
    • 2015
  • This paper presents future directions for spent nuclear fuel and high-level radioactive waste management. The successes and failures of siting nuclear waste repository experienced by the United States and other countries are reviewed with the current policy stance. Further, the needs for establishing management policy, considering the high-level radioactive waste produced by the dismantlement, nuclear security concerns, and cost-effectiveness analysis for the total nuclear fuel cycle, are emphasised. Technical discussions are organised into three main topics: interim storage, permanent disposal, and reprocessing. Licensing regimes are also investigated to suggest strategic plans for research and development programmes in the Republic of Korea.

A Prediction of Thermal Expansion Coefficient for Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 열팽창계수 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2018
  • A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste. Since the heat generated from spent nuclear fuel in a disposal canister is released to the surrounding buffer materials, the thermal properties of the buffer material are very important in determining the entire disposal safety. Especially, since thermal expansion can cause thermal stress to the intact rock mass in the near-field, it is very important to evaluate thermal expansion characteristics of bentonite buffer materials. Therefore, this paper presents a thermal expansion coefficient prediction model of the Gyeongju bentonite buffer materials which is a Ca-bentonite produced in South Korea. The linear thermal expansion coefficient was measured considering heating rate, dry density and temperature variation using dilatometer equipment. Thermal expansion coefficient values of the Gyeongju bentonite buffer materials were $4.0{\sim}6.0{\times}10^{-6}/^{\circ}C$. Based on the experimental results, a non-linear regression model to predict the thermal expansion coefficient was suggested and fitted according to the dry density.

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site (사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰)

  • Danu Kim;Soyoung Jeon;Seon-ok Kim;Sookyun Wang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.167-183
    • /
    • 2023
  • Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.