DOI QR코드

DOI QR Code

Cross-verified Measurement of Sulfide Concentration in Anaerobic Conditions Using Spectroscopic, Electrochemical, and Mass Spectrometric Methods

  • Received : 2022.08.01
  • Accepted : 2022.11.21
  • Published : 2023.03.31

Abstract

Sulfide concentrations critically affect worker safety and the integrities of underground facilities, such as deep geological repositories for spent nuclear fuel. Sulfide is highly sensitive to oxygen, which can oxidize sulfide to sulfate. This can hinder precise measurement of the sulfide concentration. Hence, a literature review was conducted, which revealed that two methods are commonly used: the methylene blue and sulfide ion-selective electrode (ISE) methods. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used for comparison with the two methods. The sulfide ISE method was found to be superior as it yielded results with a higher degree of accuracy and involved fewer procedures for quantification of the sulfide concentration in solution. ICP-OES results can be distorted significantly when sulfide is present in solution owing to the formation of H2S gas in the ICP-OES nebulizer. Therefore, the ICP-OES must be used with caution when quantifying underground water to prevent any distortion in the measured results. The results also suggest important measures to avoid problems when using ICP-OES for site selection. Furthermore, the sulfide ISE method is useful in determining sulfide concentrations in the field to predict the lifetime of disposal canisters of spent nuclear fuel in deep geological repositories and other industries.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea grant funded by the South Korean government (Ministry of Science and ICT, No. 2021M2E1A1085194). Notes: The authors declare no competing financial interests.

References

  1. T. McCartin, R. Tadesse, J. Li, H. Umeki, S.B. y Leon, and G. Palos. Management and Disposal of High-Level Radioactive Waste: Global Progress and Solutions, Nuclear Energy Agency of the OECD Report, NEA-7532 (2020)
  2. H.J. Choi, J.Y. Lee, and J. Choi, "Development of Geological Disposal Systems for Spent Fuels and High-Level Radioactive Wastes in Korea", Nucl. Eng. Technol., 45(1), 29-40 (2013). https://doi.org/10.5516/NET.06.2012.006
  3. International Atomic Energy Agency, "Geological Disposal of Radioactive Waste: Technological Implications for Retrievability", IAEA Nuclear Energy Series No. NW-T-1.19 (2009).
  4. B. Kursten, E. Smailos, I. Azkarate, L. Werme, N. Smart, and G. Santarini. COBECOMA: State-of-the-art Document on the Corrosion Behaviour of Container Materials, Eurpoean Commission Report, FIKWCT-20014-20138 (2004).
  5. F. King, C. Lilja, K. Pedersen, P. Pitkanen, and M. Vahanen. An Update of the State-of-the-art Report on the Corrosion of Copper Under Expected Conditions in a Deep Geologic Repository, Swedish Nuclear Fuel and Waste Management Co. Report, SKB-TR-10-67 (2010).
  6. J. Jiang, A. Chan, S. Ali, A. Saha, K.J. Haushalter, W.L.M. Lam, M. Glasheen, J. Parker, M. Brenner, S.B. Mahon, H.H. Patel, R. Ambasudhan, S.A. Lipton, R.B. Pilz, and G.R. Boss, "Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote", Sci. Rep., 6, 20831 (2016).
  7. L. Aventaggiato, A.P. Colucci, G. Strisciullo, F. Favalli, and R. Gagliano-Candela, "Lethal Hydrogen Sulfide Poisoning in Open Space: An Atypical Case of Asphyxiation of Two Workers", Forensic Sci. Int., 308, 110122 (2020).
  8. G. Jacks. Ground Water Chemistry at Depth in Granites and Gneisses, Karnbranslesakerhet Report, KBS-TR-88 (1978).
  9. D.S. Hall, M. Behazin, W. J. Binns, and P.G. Keech, "An Evaluation of Corrosion Processes Affecting Copper-coated Nuclear Waste Containers in a Deep Geological Repository", Prog. Mater. Sci., 118, 100766 (2021).
  10. T. Lamminmaki, P. Pitkanen, T. Penttinen, E. Pentti, J. Komulainen, K. Loimula, L. Wendling, S. Partamies, and T. Ahokas. Results of Monitoring at Olkiluoto in 2015 Hydrogeochemistry, Posiva Oy Working Report, No. 2016-44 (2017).
  11. B.K. Reese, D.W. Finneran, H.J. Mills, M.X. Zhu, and J.W. Morse, "Examination and Refinement of the Determination of Aqueous Hydrogen Sulfide by the Methylene Blue Method", Aquat. Geochem., 17(4-5), 567-582 (2011). https://doi.org/10.1007/s10498-011-9128-1
  12. R.B Baird and A.D. Eaton, Standard Method for the Examination for Water and Wastewater, 23rd Edition, Water Environment Federation and American Public Health Association, Washington (2013).
  13. T.M. Hseu and G.A. Rechnitz, "Analytical Study of a Sulfide Ion-Selective Membrane Electrode in Alkaline Solution", Anal. Chem., 40(7), 1054-1060 (1968). https://doi.org/10.1021/ac60263a020
  14. D. Tuhtar, "Investigation of Selectivity of a Sulfide Ion-Selective Electrode", Croat. Chem. Acta., 59(2), 451-462 (1986).
  15. T.S. Light and J.L. Swartz, "Analytical Evaluation of the Silver Sulfide Membrane Electrode", Anal. Lett., 1(13), 825-836 (1968). https://doi.org/10.1080/00032716808051177
  16. W. Mantele and E. Deniz, "UV-VIS Absorption Spectroscopy: Lambert-Beer Reloaded", Spectrochim. Acta A Mol. Biomol. Spectrosc., 173, 965-968 (2017). https://doi.org/10.1016/j.saa.2016.09.037
  17. J.D. CLINE, "Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters", Limnol. Oceanogr., 14, 454-458 (1969). https://doi.org/10.4319/lo.1969.14.3.0454
  18. M. Colon, M. Iglesias, M. Hidalgo, and J.L. Todoli, "Sulfide and Sulfate Determination in Water Samples by Means of Hydrogen Sulfide Generation-Inductively Coupled Plasma-Atomic Emission Spectrometry", J. Anal. At. Spectrom., 23(3), 416-418 (2008). https://doi.org/10.1039/B716302A