• Title/Summary/Keyword: spent fuel disposal

Search Result 198, Processing Time 0.025 seconds

Preliminary Evaluation of Domestic Applicability of Deep Borehole Disposal System (심부시추공 처분시스템의 국내적용 가능성 예비 평가)

  • Lee, Jongyoul;Lee, Minsoo;Choi, Heuijoo;Kim, Kyungsu;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.491-505
    • /
    • 2018
  • As an alternative to deep geological disposal technology, which is considered as a reference concept, the domestic applicability of deep borehole disposal technology for high level radioactive waste, including spent fuel, has been preliminarily evaluated. Usually, the environment of deep borehole disposal, at a depth of 3 to 5 km, has more stable geological and geo-hydrological conditions. For this purpose, the characteristics of rock distribution in the domestic area were analyzed and drilling and investigation technologies for deep boreholes with large diameter were evaluated. Based on the results of these analyses, design criteria and requirements for the deep borehole disposal system were reviewed, and preliminary reference concept for a deep borehole disposal system, including disposal container and sealing system meeting the criteria and requirements, was developed. Subsequently, various performance assessments, including thermal stability analysis of the system and simulation of the disposal process, were performed in a 3D graphic disposal environment. With these analysis results, the preliminary evaluation of the domestic applicability of the deep borehole disposal system was performed from various points of view. In summary, due to disposal depth and simplicity, the deep borehole disposal system should bring many safety and economic benefits. However, to reduce uncertainty and to obtain the assent of the regulatory authority, an in-situ demonstration of this technology should be carried out. The current results can be used as input to establish a national high-level radioactive waste management policy. In addition, they may be provided as basic information necessary for stakeholders interested in deep borehole disposal technology.

Measuring thermal conductivity and water suction for variably saturated bentonite

  • Yoon, Seok;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1041-1048
    • /
    • 2021
  • An engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW) is composed of a disposal canister with spent fuel, a buffer material, a gap-filling material, and a backfill material. As the buffer is located in the empty space between the disposal canisters and the surrounding rock mass, it prevents the inflow of groundwater and retards the spill of radionuclides from the disposal canister. Due to the fact that the buffer gradually becomes saturated over a long time period, it is especially important to investigate its thermal-hydro-mechanical-chemical (THMC) properties considering variations of saturated condition. Therefore, this paper suggests a new method of measuring thermal conductivity and water suction for single compacted bentonite at various levels of saturation. This paper also highlights a convenient method of saturating compacted bentonite. The proposed method was verified with a previous method by comparing thermal conductivity and water suction with respect to water content. The relative error between the thermal conductivity and water suction values obtained through the proposed method and the previous method was determined as within 5% for compacted bentonite with a given water content.

A Method for Operational Safety Assessment of a Deep Geological Repository for Spent Fuels

  • Jeong, Jongtae;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.63-74
    • /
    • 2020
  • The operational safety assessment is an important part of a safety case for the deep geological repository of spent fuels. It consists of different stages such as the identification of initiating events, event tree analysis, fault tree analysis, and evaluation of exposure doses to the public and radiation workers. This study develops a probabilistic safety assessment method for the operational safety assessment and establishes an assessment framework. For the event and fault tree analyses, we propose the advanced information management system for probabilistic safety assessment (AIMS-PSA Manager). In addition, we propose the Radiological Safety Analysis Computer (RSAC) program to evaluate exposure doses to the public and radiation workers. Furthermore, we check the applicability of the assessment framework with respect to drop accidents of a spent fuel assembly arising out of crane failure, at the surface facility of the KRS+ (KAERI Reference disposal System for SNFs). The methods and tools established through this study can be used for the development of a safety case for the KRS+ system as well as for the design modification and the operational safety assessment of the KRS+ system.

Thermal Stress Analysis of the Disposal Canister for Spent PWR Nuclear Fuels (가압경수로 고준위폐기물 처분용기의 열응력 해석)

  • 권영주;하준용;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500 m underground is carried out for the basic design of the canister. Since the nuclear fuel disposal usually emits much heat, a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences the thermal load due to the heat generation of spent nuclear fuels in the basket. Hence, in this paper the thermal stress analysis is executed using the finite element method. The finite clement code Eot the analysis Is not written directly, but a commercial code, NISA, is used because of the complexity of the structure and the large number of elements required for the analysis. The analysis result shows that even though the thermal stress is added to the stress generated by the hydrostatic underground water pressure and the swelling pressure of the bentonite buffer, the total stress is still smaller than the yield stress of the cast iron. Hence, the canister is still structurally safe when the thermal loads we included in the external loads applied on the canister.

Review for Applying Spent Fuel Pool Island (SFPI) during Decommissioning in Korea (원전해체시 독립된 사용후핵연료저장조 국내 적용 검토)

  • Baik, Jun-ki;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.163-169
    • /
    • 2015
  • In many nuclear power plant sites in Korea, high density storage racks were installed in the spent fuel pool to expand the spent fuel storage capacity. Nevertheless, the capability of the Hanbit nuclear site will be saturated by 2024. Also, 10 NPPs will reach their design life expiration date by 2029. In the case of the US, SFPI (Spent Fuel Pool Island) operated temporarily as a spent fuel storage option before spent nuclear fuels were transported to an interim storage facility or a final disposal facility. As a spent fuel storage option after shutdown during decommissioning, the SFPI concept can be expected to have the following effects: reduced occupational exposure, lower cost of operation, strengthened safety, and so on. This paper presents a case study associated with the regulations, operating experiences, and systems of SFPI in the US. In conclusion, the following steps are recommended for applying SFPI during decommissioning in Korea: confirmation of design change scope of SFPI and expected final cost, the submission of a decommissioning plan which is reflected in SFPI improvement plans, safety assessment using PSR, application of an operating license change for design change, regulatory body review and approval, design change, inspection by the regulatory body, education and commissioning for SFPI, SFPI operation and periodic inspection, and dismantling of SFPI.

Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • CHO Dong-Keun;CHOI Jongwon;Lee Yang;CHOI Heui-Joo;LEE Jong-Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.153-162
    • /
    • 2005
  • In this Paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by ${\~}$20 tons.

  • PDF

A Study on the Conceptual Development for a Deep Geological Disposal of the Radioactive Waste from Pyro-processing (파이로공정 발생 방사성폐기물 심지층 처분을 위한 개념설정 연구)

  • Lee, Jong-Youl;Lee, Min-Soo;Choi, Heui-Joo;Bae, Dae-Seok;Kim, Kyeong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.219-228
    • /
    • 2012
  • A long-term R&D program for HLW disposal technology development was launched in 1997 in Korea and Korea Reference disposal System(KRS) for spent fuels had been developed. After then, a recycling process for PWR spent fuels to get the reusable material such as uranium or TRU and to reduce the volume of radioactive waste, called Pyro-process, is being developed. This Pyro-process produces several kinds of wastes including metal waste and ceramic waste. In this study, the characteristics of the waste from Pyro-process and the concepts of a disposal container for the wastes were described. Based on these concepts, thermal analyses were carried out to determine a layout of the disposal area of the ceramic wastes which was classified as a high level waste and to develop the disposal system called A-KRS. The location of the final repository for A-KRS is not determined yet, thus to review the potential repository domains, the possible layout in the geological characteristics of KURT facility site was proposed. These results will be used in developing a repository system design and in performing the safety assessment.

The MUF of a Pilot-Scaled ACP Facility and Its Sensitivity

  • W. I. Ko;D. Y. Song;Lee, S. Y.;Kim, H. D.;Park, S. W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.401-405
    • /
    • 2003
  • The Advanced Spent Fuel Conditioning Process (ACP) have been developed at the Korea Atomic Energy Research Institute (KAERI) as an alternative for the effective conditioning of spent fuel far long-term storage or/and eventual disposal. This paper addresses the safeguardability of a pilot-scaled ACP facility and its sensitivity analysis. For this, a conceptual process and its material flow are analyzed using experiences from conventional fuel cycles, and measurement methods and their uncertainties are assumed for calculating MUF (Material Uncounted For) standards deviation (SD), We concluded from the preliminary analysis of the MUF SD that the pilot-scaled ACP facility with capacity of 30 MTHM/year can meet the International Atomic Energy Agency (IAEA) safeguards goals.

  • PDF

Creep Analysis for the Pressurized Water Reactor Spent Nuclear Fuel Disposal Canister (가압경수로 고준위페기물 처분용기에 대한 크립해석)

  • Ha Joon-Yong;Choi Jong-Won;Kwon Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.413-421
    • /
    • 2004
  • In this paper, a structural analysis for the pressurized water reactor(PWR) spent nuclear fuel disposal canister which is deposited under the 500m deep underground is carried out to predict the creep deformation of the canister while the underground water and swelling bentonite pressure are applied on the canister. Usually the creep deformation may be caused due to the Pressure and the high heat applied to the canister even though additional external loads are not applied to the canister. These creep deformations depend on the time. In this paper, oかy the underground water and bentonite swelling Pressure are considered for the creep deformation analysis of the canister, because the heat distribution inside canister due the spent fuel is not simple and depends on time. A proper creep function is adopted for the creep analysis. The creep analysis is carried out during $10^8$ seconds. The creep analysis results show that the creep strains are very small and these strains occur usually in the lid and bottom of the canister not in the cast iron insert. A much smaller strain is found in the cast iron insert. Hence, the creep deformation doesn't affect the structural safety of the canister, and also the creep stress which shows the stress relaxation phenomenon doesn't affect the structural safety of the canister.

Case Study of Deep Geological Disposal Facility Design for High-level Radioactive Waste (스웨덴 고준위방사성폐기물 심층처분시설의 설계 사례 분석)

  • Juhyi Yim;Jae Hoon Jung;Seokwon Jeon;Ki-Il Song;Young Jin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.312-338
    • /
    • 2023
  • The underground disposal facility for spent nuclear fuel demands a specialized design, distinct from conventional practices, to ensure long-term thermal, mechanical, and hydraulic integrity, preventing the release of radioactive isotopes from high-temperature spent nuclear fuel. SKB has established design criteria for such facilities and executed practical design implementations for Forsmark. Moreover, in response to subsurface uncertainty, SKB has proposed an empirical approach involving monitoring and adaptive design modifications, alongside stepwise development. SKB has further introduced a unique support system, categorizing ground types and behaviors and aligning them with corresponding support types to confirm safety through comparative analyses against existing systems. POSIVA has pursued a comparable approach, developing a support system for Onkalo while accounting for distinct geological characteristics compared to Forsmark. This demonstrates the potential for domestic implementation of spent nuclear fuel disposal facility designs and the establishment of a support system adapted to national attributes.