• Title/Summary/Keyword: spent batteries

Search Result 57, Processing Time 0.018 seconds

Optimum Conditions of Dismantlement for Recovery of Valuables from Spent Lithium Primary Batteries (폐일차리튬전지로부터 유가금속을 회수하기 위한 해체공정의 최적화)

  • Yoo, Koungkeun;Kim, Hong-in;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.51-58
    • /
    • 2019
  • Dismantlement of lithium primary batteries without explosion is required to recycle the lithium primary batteries which could be exploded by heating too much or crushing. In the present study, the optimum discharging condition was investigated to dismantle the batteries without explosion. When the batteries were discharged with $0.5kmol{\cdot}m^{-3}$ sulfuric acid, the reactivity of the batteries decreased after 4 days at $35^{\circ}C$ and after 1 day at $50^{\circ}C$, respectively. This result shows that higher temperature removed the high reactivity of the batteries. Because loss of metals recycled increases when the batteries are discharged only with the sulfuric acid, discharging process using acid solution and water was newly proposed. When the batteries were discharged with water during 24 hours after discharging with $0.5kmol{\cdot}m^{-3}$ sulfuric acid during 6 hours, the batteries discharged were dismantled without explosion. Because decrease in loss of metals was accomplished by new process, the recycling process of the batteries could become economic by the 2-step discharging process.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

Separation of Ag and Zn from Nitrate Leachate of Spent Silver Oxide Batteries by Solvent Extraction with Cyanex272 (Cyanex 272를 이용한 폐산화은배터리 침출액으로부터 Ag 및 Zn의 분리)

  • Sung-Yong Cho;Hyeon Seo;Pan-Pan Sun
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.31-36
    • /
    • 2024
  • The separation of Ag and Zn from the nitrate leachate of spent silver oxide batteries using Cyanex272 as an extractant was investigated. The extraction of Ag and Zn was affected by the concentrations of nitric acid and the extractant. Cyanex-272 selectively extracted Zn over Ag when the HNO3 concentration was lower than 0.1 mol/L. The co-extracted Ag was removed by stripping with 1 mol/L thiourea. Stripping of Zn from the loaded Cyanex-272 was accomplished using 0.5 mol/L HNO3 after the removal of Ag. The McCabe-Thiele diagrams for the extraction of Zn with Cyanex-272, the scrubbing tripping of Ag with thiourea, and the stripping of Zn with HNO3 were constructed. The results were verified by simulated counter-current extraction and stripping experiments. Finally, a process for the separation of Ag and Zn from silver oxide batteries was proposed.

A Study on the Separation of Mercury from Spent Mercury Batteries (단추형 폐수은 전지로부터 수은 분리에 관한 연구)

  • 손정수;박경호
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.32-37
    • /
    • 1994
  • Mercury in spent button type batteries can be separated and recovered with vacuum distillation method. It was found that mercury in the battery began to distill at $150^{\circ}C$ and organic substanced like a packing material was decomposed at$ 300^{\circ}C$. More than 99.9% of mercury contained in the battery was distiled and separated at about $250^{\circ}C$ and 20 torr with 8 hours' reaction time. The dissolution tests of the residue after distillation showed that mercury concentration in the solution were lower than 5 ppb and this values satisfied the environ-mental condition. Also as the furnace heating rate was above $15^{\circ}C$/min, it was found that the spent battery was destroyed because of increased pressure in the battery inside.

  • PDF

Solvent Extraction of Co(II) and Cu(II) from Hydrochloric Acid Solution of Spent Lithium-ion Batteries Containing Li(I), Mn(II), and Ni(II) (Li(I), Mn(II) 및 Ni(II)를 함유한 폐리튬 이온 배터리의 염산침출용액에서 Co(II) 및 Cu(II)의 용매 추출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2020
  • In order to develop a process for the recovery of valuable metals from spent LiBs, solvent extraction experiments were performed to separate Cu(II) and/or Co(II) from synthetic hydrochloric acid solutions containing Li(I), Mn(II), and Ni(II). Commercial amines (Alamine 336 and Aliquat 336) were employed and the extraction behavior of the metals was investigated as a function of the concentration of HCl and extractants. The results indicate that HCl concentration affected remarkably the extraction efficiency of the metals. Only Cu(II) was selectively at 1 M HCl concentration, while both Co(II) and Cu(II) was extracted by the amines when HCl concentration was higher than 5 M, leaving the other metal ions in the raffinate. Therefore, it was possible to selectively extract either Cu(II) or Co(II)/Cu(II) by adjusting the HCl concentration.

A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries (폐리튬이온전지의 용융환원된 금속합금상의 황산침출액에서 철(III)과 구리(II)의 분리를 위한 공정 개선)

  • Nguyen, Thi Thu Huong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • The smelting reduction of spent lithium-ion batteries results in metallic alloys containing Co, Cu, Fe, Mn, Ni, and Si. A process to separate metal ions from the sulfuric acid leaching solution of these metallic alloys has been reported. In this process, ionic liquids are employed to separate Fe(III) and Cu(II). In this study, D2EHPA and Cyanex 301 were employed to replace these ionic liquids. Fe(III) and Cu(II) from the sulfate solution were sequentially extracted using 0.5 M D2EHPA with three stages of cross-current and 0.3 M Cyanex 301. The stripping of Fe(III) and Cu(II) from the loaded phases was performed using 50% (v/v) and 60% (v/v) aqua regia solutions, respectively. The mass balance results from this process indicated that the recovery and purity percentages of the metals were greater than 99%.

Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery (건식 공정을 통한 리튬이차전지의 재활용 연구 동향)

  • Park, Eunmi;Han, Chulwoong;Son, Seong Ho;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.27-39
    • /
    • 2022
  • The global demand for lithium-ion batteries (LIBs) has been continuously increasing since the 1990s along with the growth of the portable electronic device market. Of late, the rapid growth of the electric vehicle market has further accelerated the demand for LIBs. The demand for the LIBs is expected to surpass the supply of lithium from natural resources in the near future, posing a risk to the global lithium supply chain. Moreover, the continuous accumulation of end-of-life LIBs is expected to cause serious environmental problems. To solve these problems, recycling the spent LIBs must be viewed as a critical technological challenge that must be urgently addressed. In this study, recycling LIBs using pyrometallurgical processes and post-processes for efficient lithium recovery are briefly reviewed along with the major accomplishments in the field and current challenges.

Dismantlement of Spent Lithium Primary Batteries for Recycling (폐(廢)리튬일차전지(一次電池)의 안정적(安定的) 해체(解體)를 위한 연구(硏究))

  • Yoo, Kyoung-Keun;Kim, Myoung-Hwa;Shin, Shun-Myung;Yang, Dong-Hyo;Kang, Jin-Gu;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Dismantlement of lithium primary batteries without explosion is required to recycle the lithium primary batteries which could be exploded by heating too much or crushing. In the present study, the optimum discharging condition was investigated to dismantle the batteries without explosion. When the batteries were discharged with $0.5kmol{\cdot}m^{-3}$ sulfuric acid, the batteries became inert after 4 days at $35^{\circ}C$ and after 1 day at $50^{\circ}C$, respectively. This result shows that higher temperature accelerates inert of the batteries. Because loss of metals recycled increases when the batteries are discharged only with the sulfuric acid, discharging process using acid solution and water was newly proposed. When the batteries were discharged with water during 24 hours after discharging with $0.5kmol{\cdot}m^{-3}$ sulfuric acid during 6 hours, the batteries discharged were dismantled without explosion. Because decrease in loss of metals was accomplished by new process, the recycling process of the batteries could become economic by the 2-step discharging process.