Park, Jae-Jin;Park, Kyung-Ae;Kim, Hee-Young;Lee, Eunil;Byun, Do-Seong;Jeong, Kwang-Yeong
Journal of the Korean earth science society
/
v.41
no.5
/
pp.469-477
/
2020
Salinity is not only an important variable that determines the density of the ocean but also one of the main parameters representing the global water cycle. Ocean salinity observations have been mainly conducted using ships, Argo floats, and buoys. Since the first satellite salinity was launched in 2009, it is also possible to observe sea surface salinity in the global ocean using satellite salinity data. However, the satellite salinity data contain various errors, it is necessary to validate its accuracy before applying it as research data. In this study, the salinity accuracy between the Soil Moisture Active Passive (SMAP) satellite salinity data and the in-situ salinity data provided by the Ieodo ocean research station was evaluated, and the error characteristics were analyzed from April 2015 to August 2020. As a result, a total of 314 match-up points were produced, and the root mean square error (RMSE) and mean bias of salinity were 1.79 and 0.91 psu, respectively. Overall, the satellite salinity was overestimated compare to the in-situ salinity. Satellite salinity is dependent on various marine environmental factors such as season, sea surface temperature (SST), and wind speed. In summer, the difference between the satellite salinity and the in-situ salinity was less than 0.18 psu. This means that the accuracy of satellite salinity increases at high SST rather than at low SST. This accuracy was affected by the sensitivity of the sensor. Likewise, the error was reduced at wind speeds greater than 5 m s-1. This study suggests that satellite-derived salinity data should be used in coastal areas for limited use by checking if they are suitable for specific research purposes.
Kang, Chun Goo;Park, Hoon-Hee;Oh, Shin Hyun;Lee, Han Wool;Kim, Jung Yul;Oh, Joo Yung;Lee, Ju Young;Kim, Jae Sam;Lee, Chang Ho
The Korean Journal of Nuclear Medicine Technology
/
v.17
no.2
/
pp.3-9
/
2013
Purpose: Currently commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desire to evaluate the usefulness of nuclear medicine imaging. Materials and Methods: The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc-pertechnate$. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn ten times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Results: Under the same conditions infusion rate 40 mL/min fixed to adjust the pressure of the pump when the radiopharmaceuticals between 2-3 minutes in the most integrated in the kidney phantom was excreted inthe bladder. Glomerular filtration rate (GFR), respectively, by each device SYMBIA 1,091 mL/min, FORTE 1,232 mL/min, ARGUS 1,264 mL/min, INFINIA 1,302 mL/min in that there isno statistically significant difference was found, Tmax values and T1/2 values stars from all equipment with no statistically significant difference was found. CV values of the coefficient of variation less than 5% was found to be repeatable, and to 2.67% of the lowest SYMBIA appeared, INFINIA was the highest in the 4.86%. Conclusion: Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.7
no.3
/
pp.140-147
/
2002
We investigated the temporal variations in the heterotrophic dinoflagellates (hereafter HTD), tintinnid ciliates(TC), and naked ciliates(NC) from August to November 1999 in the coastal waters off the southern Saemankeum areas where a huge red tide dominated by Cochlodinium polykrikoides/Gymnodinium impudicum was first observed in 1998. We took water samples from 2-5 depths of 4 stations in each of the 5 cruises and then measured the species composition and abundances of HTD, TC, and NC The maximum species numbers and densities of HTD, TC, and NC(11, 12, and 10 cells $m\ell$$^{-1}$ , respectively) were observed when the density of diatoms was highest (August 10), while the lowest values (1.0, 0.5, and 2.4 cells $m\ell$$^{-1}$ , respectively) were found when the red tide dominated by C. polykrikoides/G. impudicum took placed (October 18). On August 10 and November 11 when diatoms dominated the abundance of phytoplankton, the correlation coefficients between TC, NC and diatoms were relatively high. However, On September 16 and October 18 when autotrophic+mixotrophic dinoflagellates(ATD+MTD) were abundant, the correlation coefficients between HTD and ATD+MTD were relatively high. The large HTD Noctiluca scintillans was the most dominant heterotrophic protists during the C. polykrikoides/G. impudicum red tide on October 18. N. scintillans has been known to feed on the prey cells when the swimming speeds of C. polykrikikoides/G. impudicum markedly reduced at the decline stage of the red tide. Therefore, N. scintillans could be effective grazers on C. polykrikoides/G. impudicum. The maximum densities of HTD, TC, and NC in the study area were fairly lower than those obtained in the waters off Kohung-Yeosu areas in the summer-fall, 1997. The results of the present study provide the basis of understanding predator-prey relationships between dominant phytoplankton and heterotrophic protists and the roles of the protist grazers in bloom dynamics in the waters off the western Korea.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.10
no.1
/
pp.100-112
/
2005
Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.
Recently, due to various environmental problems, blast tracks in tunnel are replaced with concrete tracks, but they have more adverse effects on noise than blast tracks so that additional noise measures are needed. Among these measures, sound-absorbing blocks start to be used due to its easy and quick installation. However, the performance of sound absorption blocks need to be verified under real environmental and operational conditions. In this paper, interior noise levels in KTX train cruising in Dalseong tunnel are measured before and after the installation of sound-absorbing blocks and the measured data are analyzed and compared. Additionally, noise reduction are estimated by modeling the high speed train, the tunnel and absorption blocks. Measurement devices and methods are used according to ISO 3381 and the equivalent sound pressure levels during the cruising time inside the tunnel are computed. In addition to overall SPLs(Sound Pressure Levels), 1/3-octave-band levels are also analyzed to account for the frequency characteristics of sound absorption and equipment noise in a cabin. In addition, to consider the effects of train cruising speeds and environmental conditions on the measurements, the measured data are corrected by using those measured during the train-passing through the tunnels located before and behind the Dalseong tunnel. Analysis of measured results showed that the maximum noise reduction of 6.8 dB (A) can be achieved for the local region where the sound-absorbing blocks are installed. Finally, through the comparison of predicted 1/3-octave band SPLs for the KTX interior noise with the measurements, the understanding of noise reduction mechanism due to sound-absorbing blocks is enhanced.
Journal of the Korean Society of Fisheries and Ocean Technology
/
v.40
no.1
/
pp.29-36
/
2004
This study deals with an analysis on the sinking resistance for the model purse seine, in the case of different netting material and sinkers. The experiment was carried out using rune simplified model seines of knotless nettings. Dimension of model seines 420cm for corkline and 85cm for seine depth, three groups of models rigged 25, 45 and 60g with the same weighted sinkers in water were used. These were named PP-25, PA-25, PES-25, PP-45, PA-45, PES-45, PP-60, PA-60 and PES-60 seine. The densitie($\rho$) of netting materials were 0.91g/cm$cm^3$, 1.14g/cm$cm^3$ and 1.38g/cm$m^3$. Experiments carried out in the observation channel in a flume tank under still water conditions. Sinking motion was recorded by the one set of TV-camera for VTR, and reading coordinate carried out by the video digitization system. Differential equations were derived from the conservation of momenta of the model purse seines and used to determine the sinking speeds of the depths of leadline and the other portions of the seines. An analysis carried out by simultaneous differential equations for numerical method by sub-routine Runge-Kutta-Gill The results obtained were as follows : 1. Average sinking speed of leadline for the model seines rigged 60g with the same weighted sinkers in water was fastest for 12.2cm/sec of PES seine, followed by 11.4cm/sec of PA and 10.7cm/sec of PP seines. 2. The coefficient of resistance for netting of seine was estimated to be $K_D=0.09(\frac{\rho}{\rho_w})^4$ 3. The coefficient of resistance for netting bundle of seine was estimated to be $C_R=0.91(\frac{\rho}{\rho_w})$ 4. In all seines, the calculated depths of leadline closely agreed with the measured ones, each 25g, 45g, 60g of weighted sinkers were put into formulas meas.=1.04cal., meas.=0.99cal. and meas.=0.98 cal.
The accuracy and error characteristics of microwave Sea Surface Temperature (SST) measurements in the Northwest Pacific were analyzed by utilizing 162,264 collocated matchup data between GCOM-W1/AMSR2 data and oceanic in-situ temperature measurements from July 2012 to August 2016. The AMSR2 SST measurements had a Root-Mean-Square (RMS) error of about $0.63^{\circ}C$ and a bias error of about $0.05^{\circ}C$. The SST differences between AMSR2 and in-situ measurements were caused by various factors, such as wind speed, SST, distance from the coast, and the thermal front. The AMSR2 SST data showed an error due to the diurnal effect, which was much higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. In addition, the RMS error tended to be large in the winter because the emissivity of the sea surface was increased by high wind speeds and it could induce positive deviation in the SST retrieval. Low sensitivity at colder temperature and land contamination also affected an increase in the error of AMSR2 SST. An analysis of the effect of the thermal front on satellite SST error indicated that SST error increased as the magnitude of the spatial gradient of the SST increased and the distance from the front decreased. The purpose of this study was to provide a basis for further research applying microwave SST in the Northwest Pacific. In addition, the results suggested that analyzing the errors related to the environmental factors in the study area must precede any further analysis in order to obtain more accurate satellite SST measurements.
Korean Journal of Agricultural and Forest Meteorology
/
v.21
no.4
/
pp.238-249
/
2019
The evapotranspiration is estimated based on weather factors such as temperature, wind speed and humidity, and the Hargreaves equation is a simple equation for calculating evapotranspiration using temperature data. However, the Hargreaves equation tends to be underestimated in areas with wind speeds above 3 m s-1 and overestimated in areas with high relative humidity. The study was conducted to determine Hargreaves equation coefficient in 82 regions in Korea by comparing evapotranspiration determined by modified Hargreaves equation and the Penman-Monteith equation for the time period of 2008~2018. The modified Hargreaves coefficients for 50 inland areas were estimated to be 0.00173~0.00232(average 0.00196), which is similar to or lower than the default value 0.0023. On the other hand, there are 32 coastal areas, and the modified coefficients ranged from 0.00185 to 0.00303(average 0.00234). The east coastal area was estimated to be similar to or higher than the default value, while the west and south coastal areas showed large deviations by area. As results of estimating the evapotranspiration by the modified Hargreaves coefficient, root mean square error(RMSE) is reduced from 0.634~1.394(average 0.857) to 0.466~1.328(average 0.701), and Nash-Sutcliffe Coefficient(NSC) increased from -0.159~0.837(average 0.647) to -0.053~0.910(average 0.755) compared with original Hargreaves equation. Therefore, we confirmed that the Hargreaves equation can be overestimated or underestimated compared to the Penman-Monteith equation, and expected that it will be able to calculate the high accuracy evapotranspiration using the modified Hargreaves equation. This study will contribute to water resources planning, irrigation schedule, and environmental management.
Park, Jae-Kyun;Go, Young-Eun;Eum, Jin-Hee;Won, Hyung-Jae;Lee, Woo-Sik;Yoon, Tae-Ki;Lee, Dong-Ryul
Clinical and Experimental Reproductive Medicine
/
v.37
no.4
/
pp.307-319
/
2010
Objective: Vitrification requires a high concentration of cyroprotectant (CPA) and an elevated cooling speed to avoid ice crystal formation. We have evaluated the effect of different combinations of cooling rate and CPA on embryonic integrity (developmental competence) in order to increase the efficiency of vitrification without impairing embryo viabilit. We hypothesized that the combination of CPA or the increase of cooling rates can reduce the concentration of toxic CPA for vitrification. As consequently, we performed experiments to evaluate the effect of various composition of CPA or slush nitrogen ($SN_2$) on the mouse embryonic development following vitrification using low CPA concentration. Methods: Vitrification of mouse embryos was performed with EM grid using liquid nitrogen ($LN_2$) or $SN_2$ and different composition of CPAs, ethylene glycol (EG) and dimethylsulfoxide (DMSO). After vitrification-warming process, their survival and blastocyst formation rates were examined. For analyzing long-term effect, these blastocysts were transferred into the uterus of foster mothers. Results: Survival and blastocyst formation rates of vitrified embryos were higher in EG+DMSO group than those in EG only. Furthermor, the group using $SN_2$ with a lower CPA concentration showed a higher survival of embryos and developmental rates than group using $LN_2$. Conclusion: The combination of EG and DMSO as CPAs may enhance the survival of mouse embryos and further embryonic development after vitrification. $SN_2$ can generate high survival and developmental rate of vitrified/warmed mouse embryos when a lower concentration of CPA was applied. Therefore, these systems may contribute in the improvement of cryopreservation for fertility preservation.
This paper described the relationship between the behavior of the Israeli carp, Cyprinus carpio and the environmental noise level due to the dynamite explosion work. The experiment was conducted in the cage ($L10{\times}W4{\times}D4 m$) of aquaculture located at Chungjoo Lake, Chechon, in 1997. The fish trajectory was obtained by the telemetry system in which a pulsed ultrasonic pinger ($50 kHz, {\phi}16{\times}L70 mm$) attached to the fish was tracked three dimensionally, and the underwater noise levels were measured. The results of the study were as follows: 1. The underwater noise levels in the normal blasting measured at a distance of 400 m from the source of noise increased by $40 dB (re 1 {\mu}Pa)$ compared to the levels before explosion. The dominant frequency and the increased power spectrum level of the underwater noise by the explosion work were $75 to 100 Hz and 22.9 to 35.3 dB$, respectively. 2. The underwater noise levels in the test blasting measured at a distance of 350 m from the source of noise increased by average $49.5 dB (re 1 {\mu}Pa)$compared to the levels before explosion. 3. The swimming area of the fish was reduced with the time after explosion, and after more than one hour the fish represented the similar swimming area and behavior to the status of right before explosion. 4, The swimming depth layer of the fish was most of the case at the sea surface less than 1,0 m except during explosion or right after of it. But the fish swam downward when an external stimulus like the explosion noise was given to the fish. 5. The average swimming speeds of the fish before, during and after the works were about 1.2 times, 1.9 times and 1.0 times of the body length, respectively, and the speed of the fish with explosion was faster 1.6 times than the speed without of that. Consequently, the explosion noise levels measured by this study were sufficiently high to affect the fish, and the heavy shock by the explosion works could produce a considerable unfavorable effects to the fish.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.