• Title/Summary/Keyword: speed-up

Search Result 4,209, Processing Time 0.031 seconds

A Design Method of 2D Look-up Table of IPMSM for Electric Vehicle (전기자동차 구동용 IPMSM의 2D Look-up Table 작성기법)

  • Won, Il-Kwon;Kim, Do-Yun;Ko, An-Yeol;Lee, Jung-Hyo;Kim, Young-Real;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.104-105
    • /
    • 2013
  • When actual IPMSM is driving, it is difficult to figure out the correct current during the current control period due to the operation speed limit of digital signal processing. Therefore, in order to control IPMSM for electric vehicle efficiently, we should design 2D Look-up Table to find out optimal current reference corresponding to speed and torque of IPMSM. This paper explains the design method of 2D Look-up Table for optimal current control of constant torque area and constant output area of IPMSM for electric vehicle. Finally, experimental results are presented to verify the reliability of 2D Look-up Table.

  • PDF

Basic Study on in-Process Monitoring of B.U.E. Using Force Sensor (Force Sensor를 이용한 구성인선의 In-Process 감시에 관한 기초 연구)

  • Won, Jong-Sik;Oh, Min-Seok;Jung, Youn-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.67-72
    • /
    • 1997
  • Recently, in order to achieve high flexibility of manufacture, monitoring and control strategies of a new type have been developed. Since the generation of built-up edge on the cutting tool damages the surface finish of the workpiece, the monitoring system of built-up edge is an important process monitoring. In this study, the analyzing methods of cutting force signal to detect the built-up edge during cutting process are described. The cutting force signals are analyzed using the mean, standard deviation and mean to standard deviation of this cutting signals. We can obtain the guide to detect the built-up edge during turning process.

  • PDF

Satellite Link Simulator Development in 100 MHz Bandwidth to Simulate Satellite Communication Environment in the Geostationary Orbit (정지궤도 위성통신 환경모의를 위한 100 MHz 대역폭의 위성링크 시뮬레이터 개발)

  • Lee, Sung-Jae;Kim, Yong-Sun;Han, Tae-Kyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.842-849
    • /
    • 2011
  • The transponder simulator designed to simulate the transponder of military satellite communication systems in the geostationary orbit is required to have time delay function, because of 250 ms delay time, when a radio wave transmits the distance of 36,000 km in free space. But, it is very difficult to develop 250 ms time delay device in the transponder simulator of 100 MHz bandwidth, due to unstable operation of FPGA, loss of memory data for the high speed rate signal processing. Up to date, bandwidth of the time delay device is limited to 45 MHz bandwidth. To solve this problem, we propose the new time delay techniques up to 100 MHz bandwidth without data loss. Proposed techniques are the low speed down scaling and high speed up scaling methods to read and write the external memory, and the matrix structure design of FPGA memory to treat data as high speed rate. We developed the satellite link simulator in 100 MHz bandwidth using the proposed new time delay techniques, implemented to the transponder simulator and verified the function of 265 ms time delay device in 100 MHz bandwidth.

Development of Integrated Start-up and Excitation System for Gas Turbine Synchronous Generator (가스터빈 동기기 통합형 기동 및 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.183-188
    • /
    • 2014
  • Power conversion systems used in large gas turbine power plant can be divided into two main part. Because of the initial start-up characteristic of the gas turbine combustor, the gas turbine must be accelerated by starting device(LCI : Load Commutated Inverter) up to 10%~20% of rated speed to ignite it. In addition, the ECS(Excitation Control system) is used to control the rotor field current and reactive power in grid-connected synchronous generator. These two large power conversion systems are located in the same space(container) because of coordination control. Recently, many manufactures develop high speed controller based on function block available in the LCI and ECS with the newest power semiconductor. We also developed high speed controller based on function block to be using these two system and it meets the international standard IEC61131 as using real-time OS(VxWorks) and ISaGRAF. In order to install easily these systems at power plant, main controller, special module and IO module are used with high speed communication line other than electric wire line. Before initial product is installed on the site, prototype is produced and tests are conducted for it. The performance results of Integrated controller and application program(SFC, ECS) were described in this paper. The test results will be considered as the important resources for the application in future.

Control Scheme Using Forward Slip for a Multi-stand Hot Strip Rolling Mill

  • Moon, Young-Hoon;Jo, I-Seok;Chester J. Van Tyne
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.972-978
    • /
    • 2004
  • Forward slip is an important parameter often used in rolling-speed control models for tandem hot strip rolling mills. In a hot strip mill, on-line measurement of strip speed is inherently very difficult. Therefore, for the set-up of the finishing mill, a forward slip model is used to calculate the strip speed from roll circumferential velocity at each mill stand. Due to its complexity, most previous researches have used semi-empirical methods in determining values for the forward slip. Although these investigations may be useful in process design and control, they do not have a theoretical basis. In the present study, a better forward slip model has been developed, which provides for a better set-up and more precise control of the mill. Factors such as neutral point, friction coefficient, width spread, shape of deformation zone in the roll bite are incorporated into the model. Implementation of the new forward slip model for the control of a 7-stand hot strip tandem rolling mill shows significant improvement in roll speed set-up accuracy.

Determination of Route alignment improvement parameter for Speed up in Railway curve sections (철도곡선부 속도향상을 위한 선형개량요소 결정)

  • 조규전;이남수;정의환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.209-218
    • /
    • 1995
  • It is important role that railway speed up plays in realizing an affluent society in future. Curved lines zone have crucial effects on the speed of train travel, at the curved lines zone, it requires to set cant and slack for safety running of train and comfortable ride of passengers, a compromise is therefore to accept a certain degree of cantdeflciencyforthevarioustrain. In this study, it was presented that effective maintenance method according to the investigation of cant value in radius of curvature and analysis safety running of train, calculation of lateral acceleration as cant deficiency, and we obtain the effect of speed up appling route alignment improvement parameter in curved lines zone.

  • PDF

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Technical specification of Tilting train EMU for speed UP on existing lines (기존선 속도향상을 위한 틸팅차량시스템 기술사양(안) 제시 연구)

  • Han, Seong-Ho;Park, Kwang-Bok;Lee, Su-Gil;You, Won-Hee;Eeum, Ki-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1298-1300
    • /
    • 2002
  • This paper suggested that the technical specification of tilting train EMU for speed up on existing lines. High speed strategy of existing lines are the modification of railway system which are made on cant, lengths of transition curves, the catenary system and train system. Tilting technology is more useful a strategy for speed increases on existing lines with low investment needed. We performed a feasibility study which is considered out real track conditions and designed propulsion and braking system of tilting EMU system.

  • PDF

Analysis of time-saving effects on increasing the speed through the trial run test in Gyeongbu line (틸팅시제열차 경부선 증속시험운행을 통한 시간단축효과분석)

  • Han, Seong-Ho;Lee, Su-Gil
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1935-1942
    • /
    • 2011
  • We have tested the developed Korean tilting train in main exisiting commercial line for speed-up on cuve section to achive reduction effects of running time. We have conducted a trial run test to speed-up 30km/h on curves in Gyeongbu line successfully. Normal current train have been operated 110km/h in 600m radius. Yet, tilting train was tested 135km/h(maximum operation line speed) in same sections. We confirmed that the dynamic runing stability of train was safety by regarding wheel load and lateral force.

  • PDF