• Title/Summary/Keyword: speed limit model

Search Result 175, Processing Time 0.023 seconds

Design of a Moving Magnet Type Linear DC Motor (가동 자석형 선형 직류 전동기의 설계)

  • Jung, H.J.;Kim, Y.;Baek, S.H.;Yoon, S.Y.;Kim, P.S.;Kwon, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.224-227
    • /
    • 1998
  • Linear motors are increasingly employed as direct actuators replacing the more conventional systems composed by a rotating motor and a mechanical device. Linear DC motor is useful in a high speed and high accuracy positioning system with a feedback controller. Because of these advantages, linear DC motors have already been used as motors of pen recorders and magnetic disk storage devices, these are moving coil type linear DC motors as these movers are light. Moving magnet type linear DC motor has advantages at long stroke motors because its mover's feeding wires for driving is not necessary. This paper is concerned with the analysis of linear DC motor that is moving magnet type with unipolar. In order to analyze the dynamic behaviour a mathematical model based on a simplified field analysis developed. A two dimensional finite element field solution is employed in order to illustrate the effect of yoke saturation and motor performance. It is deduced the relation between the limit value of the thrust of the linear DC motor and the dimension of the yokes.

  • PDF

Computational method in database-assisted design for wind engineering with varying performance objectives

  • Merhi, Ali;Letchford, Chris W.
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.439-452
    • /
    • 2021
  • The concept of Performance objective assessment is extended to wind engineering. This approach applies using the Database-Assisted Design technique, relying on the aerodynamic database provided by the National Institute of Standards and Technology (NIST). A structural model of a low-rise building is analyzed to obtain influence coefficients for internal forces and displacements. Combining these coefficients with time histories of pressure coefficients on the envelope produces time histories of load effects on the structure, for example knee and ridge bending moments, and eave lateral drift. The peak values of such effects are represented by an extreme-value Type I Distribution, which allows the estimation of the gust wind speed leading to the mean hourly extreme loading that cause specific performance objective compromises. Firstly a fully correlated wind field over large tributary areas is assumed and then relaxed to utilize the denser pressure tap data available but with considerably more computational effort. The performance objectives are determined in accordance with the limit state load combinations given in the ASCE 7-16 provisions, particularly the Load and Resistance Factor Design (LRFD) method. The procedure is then repeated for several wind directions and different dominant opening scenarios to determine the cases that produce performance objective criteria. Comparisons with two approaches in ASCE 7 are made.

Manufacture of Novel Composites Synthesized with Ferromagnetic and Nano-Sized Prussian Blue and D eriving Optimum Conditions (강자성체와 나노사이즈의 프러시안 블루가 합성된 새로운 형태의 복합체 제조 및 최적의 적용 조건 도출)

  • Jong Kyu Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.151-158
    • /
    • 2023
  • In this study, a new type of composite material combined with carbonyl iron, a relatively strong ferromagnetic material, was prepared to overcome the current application limitations of Prussian blue, which is effective in removing radioactive cesium. The surface of the prepared composite was analyzed using SEM and XRD, and it was confirmed that nano-sized Prussian Blue was synthesized on the particle surface. In order to evaluate the cesium removal ability, 0.2 g of the composite prepared for raw cesium aquatic solution at a concentration of 5 ㎍ was added and reacted, resulting in a cesium removal rate of 99.5 %. The complex follows Langmuir's adsorption model and has a maximum adsorption amount (qe) of 79.3 mg/g. The Central Composite Design (CCD) of the Response Surface Method (RSM) was used to derive the optimal application conditions of the prepared composite. The optimal application conditions achieved using Response optimization appeared at a stirring speed of pH 7, 17.6 RPM. The composite manufactured through this research is a material that overcomes the Prussian Blue limit in powder form and is considered to be excellent economically and environmentally when applied to a cesium removal site.

Vocabulary Recognition Retrieval Optimized System using MLHF Model (MLHF 모델을 적용한 어휘 인식 탐색 최적화 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.217-223
    • /
    • 2009
  • Vocabulary recognition system of Mobile terminal is executed statistical method for vocabulary recognition and used statistical grammar recognition system using N-gram. If limit arithmetic processing capacity in memory of vocabulary to grow then vocabulary recognition algorithm complicated and need a large scale search space and many processing time on account of impossible to process. This study suggest vocabulary recognition optimize using MLHF System. MLHF separate acoustic search and lexical search system using FLaVoR. Acoustic search feature vector of speech signal extract using HMM, lexical search recognition execution using Levenshtein distance algorithm. System performance as a result of represent vocabulary dependence recognition rate of 98.63%, vocabulary independence recognition rate of 97.91%, represent recognition speed of 1.61 second.

Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model

  • Youngdon Kwon;Kim, See-Jo;Kim, Seki
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.131-150
    • /
    • 2003
  • A new numerical algorithm of finite element methods is presented to solve high Deborah number flow problems with geometric singularities. The steady inertialess planar 4 : 1 contraction flow is chosen for its test. As a viscoelastic constitutive equation, we have applied the globally stable (dissipative and Hadamard stable) Leonov model that can also properly accommodate important nonlinear viscoelastic phenomena. The streamline upwinding method with discrete elastic-viscous stress splitting is incorporated. New interpolation functions classified as rational interpolation, an alternative formalism to enhance numerical convergence at high Deborah number, are implemented not for the whole set of finite elements but for a few elements attached to the entrance comer, where stress singularity seems to exist. The rational interpolation scheme contains one arbitrary parameter b that controls the singular behavior of the rational functions, and its value is specified to yield the best stabilization effect. The new interpolation method raises the limit of Deborah number by 2∼5 times. Therefore on average, we can obtain convergent solution up to the Deborah number of 200 for which the comer vortex size reaches 1.6 times of the half width of the upstream reservoir. Examining spatial violation of the positive definiteness of the elastic strain tensor, we conjecture that the stabilization effect results from the peculiar behavior of rational functions identified as steep gradient on one domain boundary and linear slope on the other. Whereas the rational interpolation of both elastic strain and velocity distorts solutions significantly, it is shown that the variation of solutions incurred by rational interpolation only of the elastic strain is almost negligible. It is also verified that the rational interpolation deteriorates speed of convergence with respect to mesh refinement.

Construction of Delay Predictive Models on Freeway Ramp Junctions (고속도로 진출입램프 접속부상의 지체예측모형 구축에 관한 연구)

  • 김정훈;김태곤
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.175-185
    • /
    • 2000
  • Today freeway is experiencing a severe congestion with incoming or outgoing traffic through freeway ramps during the peak periods. Thus, the purpose of this study is to identify the traffic characteristics, analyze the relationships between the traffic characteristics and finally construct the delay predictive models on the rap junctions of freeway with 70mph speed limit. From the traffic analyses, and model construction and verification for delay prediction on the ramp junctions of freeway, the following results were obtained : ⅰ) Traffic flow showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period. ⅱ) The occupancy also showed a big difference depending on the time periods, and the downstream occupancy(Od) was especially shown to have a higher explanatory power for the delay predictive model construction on the ramp junctions of freeway. ⅲ) The delay-occupancy curve showed a remarkable shift based on the occupancies observed : O$\_$d/〈9% and O$\_$d/$\geq$9%. Especially, volume and occupancy were shown to be highly explanatory for delay prediction on the ramp junctions of freeway under O$\_$d/$\geq$9%, but lowly for delay prediction on the ramp junctions of freeway under O$\_$d/〈9%. Rather, the driver characteristics or transportation conditions around the freeway were thought to be a little higher explanatory for the delay prediction under O$\_$d/〈9%. ⅳ) Integrated delay predictive models showed a higher explanatory power in the morning peak period, but a lower explanatory power in the non-peak periods.

  • PDF

Improved Method of License Plate Detection and Recognition Facilitated by Fast Super-Resolution GAN (Fast Super-Resolution GAN 기반 자동차 번호판 검출 및 인식 성능 고도화 기법)

  • Min, Dongwook;Lim, Hyunseok;Gwak, Jeonghwan
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.134-143
    • /
    • 2020
  • Vehicle License Plate Recognition is one of the approaches for transportation and traffic safety networks, such as traffic control, speed limit enforcement and runaway vehicle tracking. Although it has been studied for decades, it is attracting more and more attention due to the recent development of deep learning and improved performance. Also, it is largely divided into license plate detection and recognition. In this study, experiments were conducted to improve license plate detection performance by utilizing various object detection methods and WPOD-Net(Warped Planar Object Detection Network) model. The accuracy was improved by selecting the method of detecting the vehicle(s) and then detecting the license plate(s) instead of the conventional method of detecting the license plate using the object detection model. In particular, the final performance was improved through the process of removing noise existing in the image by using the Fast-SRGAN model, one of the Super-Resolution methods. As a result, this experiment showed the performance has improved an average of 4.34% from 92.38% to 96.72% compared to previous studies.

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.

Analytical Study of Railroad Bridge for Maglev Propulsion Train with Dynamical Influence Variable (동적영향변수를 통한 자기부상열차용 철도교의 해석적 연구)

  • Yoo, Yi-Seul;Park, Won-Chan;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.532-542
    • /
    • 2018
  • Because maglev trains have a propulsion and absorption force without contact with the rails, they can drive safely at high-speed with little oscillation. Recently, test model of a maglev propulsion train was produced and operated, and has since been chosen as a national growth industry in South Korea; there have been many studies and considerable investment in these fields. This study examined the dynamic responses due to bridge-maglev train interaction and basic material to design bridges for maglev trains travelling at high-speed. Depending on the major factors affecting the dynamic effects, the scope of this study was restricted to the relationship between dynamic responses. A concrete box girder was chosen as a bridge model and injured train and rail types in domestic production were selected as the moving train load and guideway analysis model, respectively. From the analysis results, the natural frequency of a bridge for a maglev train, which has a deflection limit L/2000, was higher than those of bridges for general trains. The dynamic responses of the girder of the bridge for a maglev train showed a substantial increase in proportion to the velocities of the moving train like other general bridge cases. Maximum dynamic response of the girder is shown at a moving velocity of 240km/h and increased with increasing moving velocity of train. These results can be used to design a bridge for maglev propulsion trains and provide the basic data to confirm the validity and verification of the design code.

Assessment of whipping and springing on a large container vessel

  • Barhoumi, Mondher;Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.442-458
    • /
    • 2014
  • Wave induced vibrations increase the fatigue and extreme loading, but this is normally neglected in design. The industry view on this is changing. Wave induced vibrations are often divided into springing and whipping, and their relative contribution to fatigue and extreme loading varies depending on ship design. When it comes to displacement vessels, the contribution from whipping on fatigue and extreme loading is particularly high for certain container vessels. A large modern design container vessel with high bow flare angle and high service speed has been considered. The container vessel was equipped with a hull monitoring system from a recognized supplier of HMON systems. The vessel has been operating between Asia and Europe for a few years and valuable data has been collected. Also model tests have been carried out of this vessel to investigate fatigue and extreme loading, but model tests are often limited to head seas. For the full scale measurements, the correlation between stress data and wind data has been investigated. The wave and vibration damage are shown versus heading and Beaufort strength to indicate general trends. The wind data has also been compared to North Atlantic design environment. Even though it has been shown that the encountered wind data has been much less severe than in North Atlantic, the extreme loading defined by IACS URS11 is significantly exceeded when whipping is included. If whipping may contribute to collapse, then proper seamanship may be useful in order to limit the extreme loading. The vibration damage is also observed to be high from head to beam seas, and even present in stern seas, but fatigue damage in general is low on this East Asia to Europe trade.