• Title/Summary/Keyword: speed functions

Search Result 1,113, Processing Time 0.028 seconds

Development of Field Programmable Gate Array-based Reactor Trip Functions Using Systems Engineering Approach

  • Jung, Jaecheon;Ahmed, Ibrahim
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1047-1057
    • /
    • 2016
  • Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.

A DTC-PWM Control Scheme of PMSM using an Approximated Voltage Function of Voltage Vector (전압벡터의 근사 전압함수를 이용한 PMSM의 DTC-PWM 제어방식)

  • Kwak, YunChang;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.421-428
    • /
    • 2015
  • An advanced direct torque control (DTC) with pulse width modulation (PWM) method is presented in this paper. The duty ratio calculation of the selected voltage vector is based on the voltage functions of the selected voltage vector according to the sector angle. The proposed DTC uses a conventional DTC scheme with six sector divisions and switching rules. However, the winding voltages are supplied by the PWM approach. Furthermore, the duty ratio of the switching voltage vector is determined by the flux, torque error, and motor speed. The base voltage that shall determine the duty ratio can be calculated by approximate voltage functions according to the voltage angle. For the calculation of base voltages, second-order quadratic functions are used to express the output voltage of the selected voltage vector according to voltage angle. The coefficients for the second-order quadratic functions are selected by the voltage vector, which is determined by the switching rules of the DTC. In addition, the voltage functions are calculated by the coefficients and voltage angle between the voltage vector and rotor position. The switching voltages from the calculated duty ratio can supply the proper torque and flux to reduce the ripple and error. The proposed control scheme is verified through practical experimental comparisons.

Real-Time Stock Price Prediction using Apache Spark (Apache Spark를 활용한 실시간 주가 예측)

  • Dong-Jin Shin;Seung-Yeon Hwang;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.79-84
    • /
    • 2023
  • Apache Spark, which provides the fastest processing speed among recent distributed and parallel processing technologies, provides real-time functions and machine learning functions. Although official documentation guides for these functions are provided, a method for fusion of functions to predict a specific value in real time is not provided. Therefore, in this paper, we conducted a study to predict the value of data in real time by fusion of these functions. The overall configuration is collected by downloading stock price data provided by the Python programming language. And it creates a model of regression analysis through the machine learning function, and predicts the adjusted closing price among the stock price data in real time by fusing the real-time streaming function with the machine learning function.

Development of BPR Functions with Truck Traffic Impacts for Network Assignment (노선배정시 트럭 교통량을 고려한 BPR 함수 개발)

  • Yun, Seong-Soon;Yun, Dae-Sic
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.117-134
    • /
    • 2004
  • Truck traffic accounts for a substantial fraction of the traffic stream in many regions and is often the source of localized traffic congestion, potential parking and safety problems. Truck trips tend to be ignored or treated superficially in travel demand models. It reduces the effectiveness and accuracy of travel demand forecasting and may result in misguided transportation policy and project decisions. This paper presents the development of speed-flow relationships with truck impacts based on CORSIM simulation results in order to enhance travel demand model by incorporating truck trips. The traditional BPR(Bureau of Public Road) function representing the speed-flow relationships for roadway facilities is modified to specifically include the impacts of truck traffics. A number of new speed-flow functions have been developed based on CORSIM simulation results for freeways and urban arterials.

Dynamic analysis of spin speed dependent parameter rotor-bearing systems (회전속도 의존 매개변수를 가진 회전체-베어링계의 동적 해석)

  • 홍성욱;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.976-983
    • /
    • 1988
  • An efficient unbalance response analysis method for rotor-bearing systems with spin speed dependent parameters is developed by utilizing a generalized modal analysis scheme. The spin speed dependent eigenvalue problem of the original system is transformed into the spin speed independent eigenvalue problem by introducing a lambda matrix, assuming the bearing dynamic coefficients are well approximated by polynomial functions of spin speed. This method features that it requires far less computational effort in unbalance response calculations and that the influence coefficients are readily available. In addition, the critical speeds and the corresponding logarithmic decrements can be readily identified from the resulting eigenvalues.

Comparison of Image Classification Performance by Activation Functions in Convolutional Neural Networks (컨벌루션 신경망에서 활성 함수가 미치는 영상 분류 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1142-1149
    • /
    • 2018
  • Recently, computer vision application is increasing by using CNN which is one of the deep learning algorithms. However, CNN does not provide perfect classification performance due to gradient vanishing problem. Most of CNN algorithms use an activation function called ReLU to mitigate the gradient vanishing problem. In this study, four activation functions that can replace ReLU were applied to four different structural networks. Experimental results show that ReLU has the lowest performance in accuracy, loss rate, and speed of initial learning convergence from 20 experiments. It is concluded that the optimal activation function varied from network to network but the four activation functions were higher than ReLU.

All-Optical Composite Logic Gates with XOR, NOR, OR, and NAND Functions using Parallel SOA-MZI Structures (병렬 SOA-MZI 구조들을 이용한 XOR, NOR, OR 그리고 NAND 기능들을 가진 전광 복합 논리 게이트들)

  • Kim Joo-Youp;Han Sang-Kook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.13-16
    • /
    • 2006
  • We have proposed and experimentally demonstrated the all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures to make it possible to simultaneously perform various logical functions. The proposed scheme is robust and feasible for high speed all-optical logic operation with high ER.

Approximate Wave Functions of Dynamic Infinite Elements for Multi-layered Halfspaces

  • Kim, J.M.;Yun, C.B.;Yang, S.C.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.193-198
    • /
    • 1993
  • This paper presents a systematic procedure to obtain shape functions of the infinite elements for soil-structure interaction analysis. The function spaces are derived from the analytical solutions and appropriate assumptions based on physical interpretation. The function spaces are complete for the surface wave components, but approximate for the body wave components. Three different infinite elements are developed by using the wave functions of the derived function spaces. Numerical example analysis is presented for demonstrating the effectiveness of the present infinite elements.

  • PDF

A Development of Electronic Type Relay for Low Voltage Circuit Breaker based on Digital Signal Processing (디지털 신호 처리 기반 저압 차단기용 전자식 계전기 개발)

  • Park, Byung-Chul;Shon, Jong-Man;Song, Sung-Kun;Shin, Joong-Rin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.81-88
    • /
    • 2013
  • A low voltage circuit breaker protects electrical equipments from over current and short faults of system by cutting the power supply. The breaker use a thermal magnetic type trip device from the past. In recent years, electronic type relays are applied due to useful functions and services. The purpose of this development is full digitalizing of relay functions of a low voltage breaker. It includes separation of current sensor from current transformer, digital signal processing, high speed relaying, and voltage measuring for power meter. The suggestions are tested and implemented by making prototype and testing its all relay functions.

A Study on Nonlinear PID Controller Design Using a Cell-Mediated Immune Response (세포성 면역 반응을 이용한 비선형 PID 제어기 설계에 관한 연구)

  • Park Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.259-267
    • /
    • 2003
  • In this paper, we propose a nonlinear variable PID controller using a cell-mediated immune response. An immune feedback response is based on the functioning of biological T-cells. An immune feedback response and P-controller of conventional PID controllers resemble each other in role and mechanism. Therefore, we extend immune feedback mechanism to nonlinear PE controller. And in order to choose the optimal nonlinear PID controller games, we also propose the on-line tuning algorithm of nonlinear functions parameters in immune feedback mechanism. The trained parameters of nonlinear functions are adapted to the variations of the system parameters and any command velocity. And the adapted parameters obtained outputs of nonlinear functions with an optimal control performance. To verify performances of the proposed control systems, the speed control of nonlinear BC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system variations.