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Approximate Wave Functions of Dynamic Infinite Elements
for Multi-layered Halfspaces

J-M.Kim“ , C.-B. Yun® and S.-C. Yang®

This paper presents a systematic procedure to obtain shape functions of the infinite elements
for soil-structure interaction analysis. The function spaces are derived from the analytical
solutions and appropriate assumptions based on physical interpretation. The function spaces
are complete for the surface wave components, but approximate for the body wave
components. Three different infinite elements are developed by using the wave functions of the
derived function spaces. Numerical example analysis is presented for demonstrating the
effectiveness of the present infinite elements.

1. GOVERNING EQUATION AND ANALYTICAL SOLUTIONS

Referring to Figure I, the harmonic motion of a multi-layered isotropic elastic exterior
region € in a soil-structure interaction system can be represented as the Navier's equation
(A+2)VV-u-pVxVxu+po’u=0 in Q ¢))
where the displacement field is defined as u(x;n)e’™; o is the frequency; i = J-1 ;X is the
position vector; A and p are Lame's constants; and p is the mass density. The above equation
is subjected to boundary conditions as : tu(x;w)=0 onI';, and u(x;w)=ﬁ(x;w) on I,
where t, is the traction vector associated with the displacement field u, and u is the

displacement on I, . Since this boundary-value problem, except in special cases with a bedrock,
remains unsolved, approximate solutions of the free-field problem have been utilized for shape
functions of the infinite elements [1,2].

Let's consider a free-field problem with the same horizontal layers and the halfspace. The

solutions of this problem v(x;m)e™ lead to the transcendental equations in terms of the

wavenumber &, which are related to surface waves [3]. When the displacement field v(x;c)) in
cylindrical coordinates is expressed in terms of Fourier components with respect to the
azimuth, the solution v{ in the / -th layer, corresponding to the m-th wavenumber &, and n-
th Fourier component, can be obtained as

vO(x;0,k,) =R(r;0,k,)27(z;0,k,)s" (0) ()
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in which R is a function matrix containing the functions as H® (k,7), H® (k,r), H(k,r);
H® is the second kind of Hankel function of order n; Z” is a function matrix consisting of
the functions as e—v,,lzl’ e—v,:lzl’ ev,,lzl’ evpzlzt D vy, :(kmz_kSlz)xlz’ sz =(km2"kp12)”2a
k,=0/C,, ky=0/C,, C,=,/p)", C,={A,+21,)/p}"; and s”(0) is a unknown
coefficient vector. The functions e"** and e"”" are to be excluded in the solution of the

halfspace to satisfy the radiation condition. Now one can obtain a complete function space V¢’
for the surface wave components in the /-th layer of a layered medium as

V¥ = (v®(x;0,k,)}5.,, in which {v,}}  denotes an M-dimensional function space spanned
over the functions v, (m=1,2,---, M).

Thus the displacement component u, associated with the surface waves included in the
displacement field u, can be expanded using the functions in V{’, ie, uf(x;0)
=3 n al(@) v (x;0,k,), where al’(0)'s are coefficients to be determined from the
boundary condition on T,. The displacement component u’ satisfies the field equation and the
boundary condition on the free surface I';,. However, it does not generally satisfy the

boundary condition on I, because the body wave components may be included in the
displacement field u.

The displacement component u, corresponding to the body waves may be represented as
u, = u—ug. When a layered medium is disturbed by a vibrating foundation placed on the top
surface of a layered medium, the magnitude of the component u, is zero at the vertical

interface while nonzero at the horizontal interface on the boundary I',. It is because the
inclined body waves incident upon the vertical interface are fully radiated the energy by the
surface waves which may be developed by the reflections and/or the refractions of the body
waves. On the other hand, when vibration sources are located in the interior region, the
magnitude of the body wave component on the vertical interface is nonzero but much smaller
than that on the horizontal interface. Therefore it can be interpreted that most of the body

wave components u, propagate through the underlying halfspace.
2. APPROXIMATE WAVE FUNCTION SPACES

In this study, the exterior domain €, is divided into three domains of Q,, Q,, and Q.

shown in Figure 1. The functions associated with the displacement components ug are the
Hankel functions of the second kind in the radial direction » and the complex exponential
functions in the vertical direction z. For large value of r(r — ), one can obtain an

approximation as H(kr)~ (2/ wkr )2 ¢ 4-m'2) Thyg approximated complete function

spaces for the displacement field u associated with the boundary condition on T',,, can be

expressed as: P(x)={x""}"  H.(r)={r"e ™ >, and E;(z)={e" e "}, where

m=1> m=1>
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P(x) is a polynomial function space, H(r) and E,(z) are function spaces to represent natural
modes in the radial direction # and in the vertical direction z, respectively. The body wave
component u, in a homogeneous elastic halfspace can be represented by the second kind of

spherical Hankel functions, A% (k,R) and A (k,R), in which R is the distance from the
vibration source to the observation point. Since the spherical Hankel function can be
approximated as A (x)~ (1/x) e ™™ and further as A®(x)~ e 1+0xg{m4rm ) £or Jarge
value of X, an approximate function space for the body wave components is constructed as

H(x) = {e ¢ ™%} both in the radial and vertical directions,
On the basis of the function spaces described above, approximate function spaces for the
given boundary-value problem have been introduced as :

U, = (H(n®H,(r)) ® P(z) ()
U, = P(r) ® (Eg(z)®H,(2)) (4)
Uy= (Hy(r)OH,(r)) © (Es(2)® Hy(2)) ®)

where U,,, U, and U, are the respective function spaces for domains Q,;, €, and Q.; A®B
and A ®B denote the direct sum and the tensor product of spaces A and B, respectively.
Proposed function spaces may be complete when the problem has a rigid bedrock. But they are
complete only for the surface wave components, if the soil medium includes a underlying
halfspace. One can be easily shown that the body wave components included in the
approximate function spaces have finite cylindrical wavefronts similar to the interface boundary
T,. Note that the displacement field u based on the proposed function spaces enable to satisfy
the compatibility conditions on the interface between the interior and the exterior domains,
and also on the interfaces between two adjacent infinite elements.

3. DYNAMIC INFINITE ELEMENTS

The structure and the near field region, in this study, are modelled by using the conventional
axisymmetric finite elements, and the exterior region is represented by using the proposed
axisymmetric infinite elements. The cylindrical coordinate system is chosen for analyzing a
layered halfspace. The mappings of the infinite element from the local coordinates to the global

coordinates are defined as : r =r,(1+&), z= Eﬂi y L(n) z, for the horizontal infinite element;
r=2¥ L(n)r, z=2z,-C for the vertical infinite element; r =r,(1+8), z=z,-C for the
corner infinite element; where L (1) is Legendre polynomial associated with node j; r, and z,

are the coordinates of the corner point in the region Q; and N is the number of nodes. The

ranges of the local coordinate are n [-1,1], § €[0,%) and { €[0,).
The displacement field in an infinite element has been easily obtained by using the proposed
function spaces as

N M

u(r,z0)=3 > N, (r.z;0)y, (o) )

j=l m=1
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where u(r,z;0) is the vector of the displacement field (=<u,,u,u, >"); N m{(r,2;0) denotes
the shape function as L (1) f,,(§;0) for horizontal infinite element, L (n)g,,(C;®) for vertical
infinite element, and f,(§;0)g, (G;®) for corner infinite element; y, (o) is the parameter

vector associated with N, ; fm(é;(o) is in H(r(§))OH,(r&)); gm(C;m) is in

E(Q)@H,(C); N is the number of nodes for horizontal and vertical infinite elements, while
the number of wave functions for the corner infinite element; and M is the number of wave
functions included in the displacement approximation in an infinite element. The wavenumber,

k (0), is a complex quantity whose imaginary part is zero or negative so that the radiation
condition at infinity may be satisfied. The Equation (6) can be expressed in matrix form as
u(r,z;0)=N(r,z;0) p(®) ™
where N(r,z;0) is the matrix of the shape functions and p(@) is the corresponding
generalized coordinate vector as in Equations (8) and (9) :

N=[ NL-, Ny I [ NyLe-o, Ny X | - | NyL-o, Ny, 1] 3)

T
P=<Y11T=""Y1MT | szr"”’hMT o yNIT"”’yNMT > )

in which T is a 3 x 3 identity matrix.
For the purpose of constructing the system matrices, it is required to express the
displacement field in each infinite element in terms of shape functions associated with the nodal

displacements u", the displacements along the sides of the infinite element u®, and the
internal displacements u®’. Hence, Equation (7) is rewritten as
u=u®+u®+u®  or u(r,z;0)=N({,z0) q(@) (10)

where the respective expressions for the horizontal, vertical and corner infinite elements are :

N Ny Ny ) N-1 Ny
“(n)zzLjf;dj, “(.s‘)ZZL1 d)l all+zLN ¢, ay, u(')_—_ZZLj d)l a, an
=1 1=2 1=2 =2 1=2
N N, N, . N-1N,
u(") = Z ngldj’ u(S) = Z [’l Wm blm + ZLN Wm bNm ’ “(,) = ZZLJ W"’ bfm (12)
j=1 m=2 m=2 j=2 m=2
Ny N, Ny N,
= fgd,  w0=3.088,+ 2 fiVabu, W32 0, (13)
1=2 m=2 =2 m=2

in which d),(&;co) and \um(C;m) denote the wave functions as f,(&;w)—f,(&;m) and
gm(C;a))— gI(C;co), respectively; N, and N, are the numbers of horizontal and vertical wave
components used in the infinite elements, respectively, dj((o) is the displacement vector at

node j; and a j,(co), b jm(m) and c,m(m) are the respective parameter vectors associated with
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the shape functions L (n),(&;0), L (n)v,(G;0) and ¢,(¢;0)v,(Go). N(r,z;0) is the new

shape function matrix and q(®) is the new generalized coordinate vector.
The relationship between two generalized coordinates p(®) and q(o) can be obtained as

plo)=T q(o), where T is the transformation matrix that can be easily derived from
Equations (7) and (10). Thus one can obtain the relationship between two shape function
matrices N(r,z,0) = N(r,z;0) T.

To construct the stiffness and mass matrices of an infinite element, it is required to perform
numerical integrations of complex exponential functions in the infinite direction. For the
computational efficiency, at first, the element matrices are computed for the old coordinates
p(®) by using the Gauss-Laguerre quadrature with complex coefficients[1], then the results

are transformed into those for the new coordinates q(w) as: K, = T K, T and M,

=T'M »» X - Prior to assembling the element matrices into the system matrices, the degrees of

freedom associated with the internal displacement u® in the element matrices are condensed
out.

4. NUMERICAL EXAMPLES AND DISCUSSIONS

The infinite elements have been used to obtain the horizontal and rocking impedance
functions for a rigid disk placed on layered halfspace as shown in Figure 2. Both the horizontal
layer and the halfspace are assumed to be elastic, homogeneous and isotropic with different
shear velocities (C,, and C,,), densities (p, and p,) and Poisson's ratios (v, and v,). Example

analysis is carried out for the case with values : C,,/C, =0.8, p,/p, =0.85, v, = v, = 0.25.

The impedance functions of the disk have been obtained and are expressed in terms.of the
dimensionless frequency a, (= @R, /C,). These results are found to be in good agreements
with the results obtained by Yang and Yun[1] and Luco[4]. In the Yang and Yun's study, the
underlying halfspace has been modelled using the finite elements for a hemisphere with the
radius 7, and the radiational infinite elements for the remaining region. Numerical -results
indicate that the present method gives slightly stiffer solutions than those by other methods but
it is easier to model the layered halfspace and requires less number of the degrees of freedom
of the soil-structure.
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Figure 1. Anidealized SSI system
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Figure 2. Rigid disk on layered halfspace
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Figure 3. Horizontal impedance function of rigid disk on layered halfspace (// R, = 1.0)
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Figure 4. Rocking impedance function of rigid disk on layered halfspace (H /R, =1.0)
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