• Title/Summary/Keyword: speed data

Search Result 8,853, Processing Time 0.04 seconds

(On-Line Test of High Speed Rail Development) (고속전철기술개발사업의 시운전시험계획)

  • 김석원;최강윤;김기환
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.376-384
    • /
    • 1999
  • In this paper, we introduce the on-line test plan of high speed rail development, which will be carried out at the test section of Seoul-Pusan high speed line from May to October, 2002. The test items are decided focused on the verification of the perofrmace and acquirement of the technical data of the high speed rail system development. The running time and distance of the train are calculated for several limited maximum speed cases. The detailed test scenario shall be developed according to the process of development and design of the system.

  • PDF

Concurrency processing comparison of large data list using GO language (GO언어를 이용한 대용량 데이터 리스트의 동시성 처리 비교)

  • Lee, Yoseb;Lim, Young-Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.361-366
    • /
    • 2022
  • There are several ways to process large amounts of data. Depending on the processing method, there is a big difference in processing speed to create a large data list. Typically, to make a large data list, large data is converted into a normalized query, and the result of the query is stored in a List Map and converted into a printable form. This process occurs as a cause of lowering the processing speed step by step. In the process of storing the results of the created query as a List Map, the processing speed differs because the data is stored in a different format for each type of data. Through the simultaneous processing of GO language, we want to solve the problem of the existing difference in processing speed. In other words, it compares the results of GO language concurrency processing by providing how different and how it proceeds between the format contained in the existing List Map and the method of processing using concurrency in large data lists for faster processing. do.

Computer-Interfacing Development for Propeller-Anemometer

  • Saad, Nor Hayati;Janin, Zuriati;Piah, Ruhaidawati Mohd Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.515-519
    • /
    • 2004
  • A Propeller-Anemometer is an instrument used specifically, to measure the wind speed. The accurate measurement of the wind speed is vitally important such required by any weather stations. In this research, the measurand of the instrumentation was the rotational speed of the propeller and the instrumentation result or output data was wind velocity. The speed measured was recorded digitally in the computer by using specific software. A specific sensor used to measure a variable by converting information of the variable (rotational speed of the propeller) into a dependent signal such as electrical signal in form of voltage. The development of Propeller-Anemometer involved few sets of instrumentation process and equipment. It included three major parts, mechanical, electronics and computer. The main instrumentation processes were physical and signal interfacing, signal conditioning, logic interfacing, data transmission to computer and processing the data. Generally, this paper presents the overall concept and design of Propeller-Anemometer Instrumentation. However, an emphasis was mainly in designing and building the interfacing system, hardware and software. Basically, for the first phase of the development, this project designed and built the RS232 terminal using Peripheral Interface Controller (PIC), PIC16F873. The hardware can be interfaced to computer or other compatible devices. This routine converted input voltage from the circuit to speed (velocity) and transmitted them afterwards to the target device by using the RS232 transmission protocol. This implementation implied a computer display as visual interface. For the purpose of this paper, RS232 data transmission was carried out using a Microsoft Visual Basic software routine.

  • PDF

Analysis on Video Image Detection System Performance by Vehicle Speed (차량 속도별 영상검지기 성능분석)

  • Jang, Jin-Hwan;Park, Chang-Soo;Baik, Nam-Cheol;Lee, Mee-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.105-112
    • /
    • 2005
  • This paper not only tests VIDS(Video Image Detection System) performance by vehicle speed group but also suggests optimal VIDS height considering road and cost condition. The VIDS spreads over freeway and national highway and plays an important role in ITS(Intelligent Transportation Systems). As a result, speed data accuracy drops form 50kph vehicle speed and volume and occupancy data accuracy drop from 30kph. Lowest speed data accuracy is only 88%, but volume and occupancy accuracy are 75% and 77% respectively. The reason VIDS data accuracy drop by vehicle speed is gap distance decrease between vehicles. Therefore, this paper suggests $17m{\sim}21m$ for optimal VIDS height considering road and cost condition.

An empirical study on the relationship of speed change and injuries subjected by rear-end collisions (후미추돌사고의 속도변화와 승차자 상해에 관한 실증적 분석)

  • Kang, Sung-Mo;Kim, Joo-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.797-807
    • /
    • 2009
  • In a case of an automobile rear-end collision, scale of the collision which are the extent of vehicle damage and the injury of the passenger is affected by the speed change. Based on the photographic interpretation of the actual accident cases in the Seoul and the Incheon area, this study measured the depth of crush and calculated the speed change from the statement data of the accident and speed, and also injury data such as diagnosis, hospitalization days are collected. The period of hospitalization and diagnostics claimed proves to have no statistical correlation with the depth of vehicle crush and speed change. Based on the statistical analysis from this study and previous foreign studies, we found that there have been 78.1% of personal accidents didn't reach the injury threshold. There should be objective information on the scale of accident accepting the claims-to-be-injured in the future, and application of injury threshold level suggested are considered to be very useful.

  • PDF

Integrated Water Resources Management in the Era of nGreat Transition

  • Ashkan Noori;Seyed Hossein Mohajeri;Milad Niroumand Jadidi;Amir Samadi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.34-34
    • /
    • 2023
  • The Chah-Nimeh reservoirs, which are a sort of natural lakes located in the border of Iran and Afghanistan, are the main drinking and agricultural water resources of Sistan arid region. Considering the occurrence of intense seasonal wind, locally known as levar wind, this study aims to explore the possibility to provide a TSM (Total Suspended Matter) monitoring model of Chah-Nimeh reservoirs using multi-temporal satellite images and in-situ wind speed data. The results show that a strong correlation between TSM concentration and wind speed are present. The developed empirical model indicated high performance in retrieving spatiotemporal distribution of the TSM concentration with R2=0.98 and RMSE=0.92g/m3. Following this observation, we also consider a machine learning-based model to predicts the average TSM using only wind speed. We connect our in-situ wind speed data to the TSM data generated from the inversion of multi-temporal satellite imagery to train a neural network based mode l(Wind2TSM-Net). Examining Wind2TSM-Net model indicates this model can retrieve the TSM accurately utilizing only wind speed (R2=0.88 and RMSE=1.97g/m3). Moreover, this results of this study show tha the TSM concentration can be estimated using only in situ wind speed data independent of the satellite images. Specifically, such model can supply a temporally persistent means of monitoring TSM that is not limited by the temporal resolution of imagery or the cloud cover problem in the optical remote sensing.

  • PDF

A study on the resistance affecting on the engine power in towing fishing gear of a bottom trawl ship (저층 트롤선의 예망 시 기관출력에 영향을 미치는 저항들에 관한 고찰)

  • Woo-Gyeong WANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.344-353
    • /
    • 2023
  • In the actual sea, the additional resistance due to external force such as wind, current and wave is accompanied, and the required power is added in response to these resistance. Especially when the ship is sailing at low speed, the effects of wind and current have a great impact on the safe control of the ship. Likewise, it is thought that the effects of wind and current have a great impact on the trawl ship control since the towing speed of a bottom trawl ship is a low speed of 3 to 4 knots. If the reduce of ship speed and the increase of engine power due to the influence of wind and current can be identified, the safe towing power can be calculated based on a given engine output. Thus, the appropriate size of a fishing gear can be determined. In this study, a total of 20 trawl operations were conducted for seasonal maritime research in the same research area according to the operation mode of propeller. Based on navigation data, trawl fishing data, and engine performance data acquired during the towing fishing gear, and data of ship speed, hull resistance, fishing gear resistance, wind force and current force according to an incidence angle were estimated. The overall power for these loads was calculated and compared with the measured engine power, and the effects of wind force and current force on the engine power were investigated.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.

3-D Information Model for High-speed Railway Infrastructures (고속철도시설물을 위한 3차원정보모델)

  • Shim, Chang-Su;Kim, Deok-Won;Youn, Nu-Ri
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.241-246
    • /
    • 2008
  • Design of a high-speed railway line requires collaboration of heterogeneous application systems and of engineers with different background. Object-based 3D models with metadata can be a shared information model for the effective collaborative design. In this paper, railway infrastructure information model is proposed to enable integrated and inter-operable works throughout the life-cycle of the railway infrastructures, from planning to maintenance. In order to develop the model, object-based 3-D models were built for a 10km railway among Korea high-speed railway lines. The model has basically three information layers for designers, contractors and an owner, respectively. Prestressed concrete box-girders are the most common superstructure of bridges. The design information layer has metadata on requirements, design codes, geometry, analysis and so on. The construction layer has data on drawings, real data for material and products, schedules and so on. The maintenance layer for the owner has the final geometry, material data, products and their suppliers and so on. These information has its own data architecture which is derived from similar concept of product breakdown structure(PBS) and work breakdown structure(WBS). The constructed RIIM for the infrastructures of the high-speed railway was successfully applied to various areas such as design check, structural analysis, automated estimation, construction simulation, virtual viewing, and digital mock-up. The integrated information model can realize virtual construction system for railway lines and dramatically increase the productivity of the whole engineering process.

  • PDF