• 제목/요약/키워드: speed and tension control

검색결과 83건 처리시간 0.023초

롤생산방식 유연회로기판의 레이저 드릴링 고속화 요소기술 (Enabling Technology for High-Speed Laser Drilling of Roll Type FPCB)

  • 라웅재;최환영
    • 실천공학교육논문지
    • /
    • 제15권1호
    • /
    • pp.127-132
    • /
    • 2023
  • Roll to Roll (이하 RTR)로 연결된 유연회로기판(이하 FPCB)에서 일정한 장력을 유지하여 안정적인 홀 가공이 가능하게 하는 Dancer Roll System를 경량화하고 서보모터를 활용한 토크 제어를 통해 기존 방식 FPCB RTR에서는 대응 불가능하였던 중력가속도의 2배가 되는(이하 2.0G) 가속도의 고속 가공이 가능하도록 요소기술과 성능 지표를 제시한다. 기존 마그넷 클러치 방식 RTR에서는 달성이 불가능하였던 높은 회전수와 발열 문제, 낮은 토크 문제등을 마그네슘 소재를 이용한 Roll의 경량 가공법 개발과 서보모터의 토크 제어 알고리즘 개발을 통하여 해결하여 FPCB에 균일한 장력을 제공하고 토크 안정성을 높인다. 본 연구에서 개발한 요소 기술로 인해 Dancer Roll의 반응속도가 개선되어 목표한 고속화를 달성하였다.

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

A Detecting Technique for the Climatic Factors that Aided the Spread of COVID-19 using Deep and Machine Learning Algorithms

  • Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.131-138
    • /
    • 2022
  • Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.

제주 연근해 삼치·방어용 끌낚시의 조업 장비 개발 (A Study on the Improvement of Trolling Equipment for Spanish Mackerel and Yellow Tail in the Coast of Jeju island)

  • 박용석;김병엽;이창헌
    • 수산해양교육연구
    • /
    • 제27권2호
    • /
    • pp.422-429
    • /
    • 2015
  • The purpose of this study is the improvement of the existing trolling hauler, which has only one wheel to wind a main line, for saving man power around the coast of Jeju island. The trolling hauler manufactured for a test performance consisted of the wheel part of a main line and the roller part of a leader line including labor-saving devices comprised of a friction clutch, a fastener and springs. Even though this existing electric hauler system is convenient to control the wheel speed and the winding direction, it is apt to cost high and to corrode quickly at sea. Therefore, to remove these negative elements and to operate rollers for hoisting a leader line of the trolling, hydraulic motors were used separately. As a result, according to using of labor-saving devices, the towing tension occurred in operating in fishing ground could be selected moderately without breaking of lines and the operating efficiency of the trolling hauler was verified.

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구 (A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE)

  • 이동원;강남철;김근영;권영두;권순범
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

회류수조를 이요한 자루그물의 가상질량 추정 (Estimation of the Virtual Mass of Conical Nets using Circulating Water Channel)

  • 김현영
    • 수산해양기술연구
    • /
    • 제36권1호
    • /
    • pp.60-65
    • /
    • 2000
  • 수중에서 운동하는 그물어구의 가상질량은 어구의 운동을 해석하고 제어하는데 중요한 파라미터이다. 본 연구에서는 트롤어구의 가상질량을 추정하기 위해서 현재 트롤 어구에서 사용되고 있는 여러 종류의 그물감을 이용해서 자루그물을 제작하여 속도제어가 가능한 회류수조를 이용하여 가상 질량이 망지의 규격 및 망사의 부피 등과 어떤 관계가 있는지를 분석하였고, 실제어구의 가상질량 계산에 적용하여 보았다. 본 연구에서 얻어진 결과를 요약하면 다음과 같다. 1. 재료의 양은 같이 하고 순수하게 영각만을 달리한 각 그물에 대해 영각이 클수록 저항이 더 크게 나타났다. 2. 저항계수 (C 하(d))는 레이놀즈수(Re)에 따라 점점 감소하는 경향을 보이며, 식으로 나타내면 다음과 같았다. C 하(d)=0.039Re 상(-0.1474) 3. 망지의 표면적(TSA, Twine Surface Area)이 클수록 저항 값이 크게 나타났으며 식으로 나타내면 다음과 같다. R=21.398TSA 상(-0.4219) 4. 질량계수(C 하(M))는 유속(U)이 증가함에 따라 증가하는 경향을 나타내며 실험식은 다음과 같다. C 하(M)=37.557U-8.9684 5. 가상질량은 망사의 체적(V)과 d/l에 각각 비례관계를 나타냈다.

  • PDF

이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정 (Measurement of Bubble Size in Flotation Column using Image Analysis System)

  • 안기선;전호석;박철현
    • 자원리싸이클링
    • /
    • 제29권6호
    • /
    • pp.104-113
    • /
    • 2020
  • 기포크기는 컬럼부선에서 기포체류시간, 기포표면적플럭스(Sb) 및 운송율(Cr)에 영향을 미치는 중요 변수로 인식되고 있다. 본 논문은 부선컬럼에서 기포크기의 측정방법, 가동변수들의 관계 그리고 가스분산특성을 논한다. 기포크기는 고속카메라와 이미지 분석 시스템을 이용하여 가동변수들(가스속도, 세척수속도, 기포제농도)의 조건에 따라 부선컬럼에서 직접적으로 측정되었다. 각 측정과 산정된 기포크기 값들을 비교한 관계식이 ±15~20의 오차범위 내에서 도출되었고 평균 기포크기(Sauter mean diameter)는 0.718mm로 확인되었다. 본 시스템으로부터 기포크기 및 분포를 조절할 수 있는 경험식이 가동조건들(Jg: 0.65~1.3cm/s, JW: 0.13~0.52cm/s, frother concentration: 60~200ppm) 하에서 개발되었다. 기포제농도의 증가는 표면장면과 기포크기를 감소시킨다. 임계병합농도는 표면장력이 가장 낮은 49.24mN/m일 때인 기포제농도 200ppm이라고 판단된다. 공기속도의 감소, 기포제농도 및 세척수속도의 증가에 따라 기포크기가 감소하는 경향을 보였다. 가스홀드업은 가스속도와 비례관계에 있으며 고정된 가스속도 조건에서 기포제농도 및 세척수속도와 비례관계였다.

타액에 의한 오염이 상아질 접착제의 미세전단결합강도에 미치는 영향 (EFFECT OF SALIVARY CONTAMINATION OF TEETH ON MICROTENSILE BOND STRENGTH OF VAR10US DENTIN BONDING SYSTEMS.)

  • 최경규;류길주
    • Restorative Dentistry and Endodontics
    • /
    • 제28권3호
    • /
    • pp.203-208
    • /
    • 2003
  • The purpose of this study was to evaluate the effect of salivary contamination of teeth on bonding efficacy of self-priming and self-etching DBSs. The materials used were Single Bond(SB, self-priming system, 3M), Unifil Bond(UB, self-etching system, GC), and Scotchbond Multi-Purpose Plus(SM, 3M) as control. Forty five human molars randomly allocated to three groups as dentin bonding systems tested and embedded in epoxy resin. Then the specimens were wet-ground to expose flat buccal enamel surface or flat occlusal dentin surface and cut bucco-lingually to form two halves with slow speed diamond saw. One of them was used under non-contamination, other under contamination with saliva. The bonding procedure was according to the manufacturer's directions and resin composite(Z-100, 3M Dental Products, St. Paul, MN) was built-up on the bonded surface 5mm high. The specimens were ground carefully at the enamel-composite interface with fine finishing round diamond bur to create an hour-glass shape yielding bonded surface areas of $1.5{\pm}0.1\textrm{mm}^2$. The specimens were bonded to the modified microtensile testing apparatus with cyanoacrylate, attached to the universal testing machine and stressed in tension at a CHS of 1mm/min. The tensile force at failure was recorded and converted to a tensile stress(MPa). Mean values and standard deviations of the bond strength are listed in table. One-way ANOVA was used to determine significant difference at the 95% level. The bond strength of SBMP and SB were not affected by salivary contamination, but that of UB was significantly affected by salivary contamination. These results indicate that DBSs with total etch technique seems less likely affected by salivary contamination in bonding procedure.

열차 운행 중인 기관사의 각성상태 분석에 관한 연구 (A Study Concerning Analysis of Arousal State of locomotive Engineering During Operating Train)

  • 양희경;이정환;이영재;이재호;임민규;백종현;송용수
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.891-898
    • /
    • 2012
  • The study for the passenger's comfortableness of vehicles and the arousal of car drivers has been done widely. On the other hand, there are few studies for the locomotive engineers. Human error means that the mistakes made by human, recently it receives attention in the field of safety engineering and human engineering. Comparing the operating condition of train with car, because of the simplification of the visual stimulus, the arousal level on the train goes down easily. The arousal level down makes judgement down, the accident risk from human error is getting bigger. In this study, we measured bio-signals(ECG, EDA, PPG, respiration and EEG) from 6 locomotive engineers to evaluate their arousal state while they operated the train. Also we recorded the 3 axes acceleration signal showing the vibration state of train. Also, the existence of tunnels were simultaneously measured. At the station section where the train speed goes down, the size of vector's sum decreases because of reduced vibration. Beta component in EEG tends to increase at the entering point of each station and tunnel. It is due to the arousal reaction and tension growth. The mean SCR(skin conductance response) was more increased in neutral section. As the button control movement (body movement) increases in the neutral section, it is appeared that SCR increase. RR interval tends to gradually increase during train operation for 1 hour 40 minutes. However, It tends to sharply decrease at the stop station because strong concentration needed to stop train on the exact point. The engineer's arousal reaction can be checked through analysing the bio-signal change during train operation. Therefore, if this analysing result is adopted to the sleepiness prevention caution system, it will be useful for the safety train operation.