• Title/Summary/Keyword: speed and tension control

Search Result 82, Processing Time 0.029 seconds

Correlation of Yarn Tension with Parameters in the Knitting Process

  • Koo, Young-Seok
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.80-84
    • /
    • 2002
  • Tension control is an important factor in producing high quality knitted products and in maintaining good processing condition. Yarn tension during knitting is subject to be affected from many elements of the machine and process parameters. Several factors including yam feeding speed, feeding angle, and needle gauge that are considered to influence on the tension variation were investigated. Yam feeding speed did not show high contribution to the tension variation but feeding angle of yam did show high correlation with the tension. No or negative correlation of the tension with needle gauge was found from the results. In order to keep well-determined process condition in the knitting manufacturing, it is strongly suggested that all knitting elements and parameters should be in the integrated control circumstance.

Real Time Simulation of the High Speed Multibody Tracted Vehicle for Track Tension Control (궤도장력 조절을 위한 다물체로 이루어진 고소궤도차량의 실시간 시뮬레이션)

  • 백승한;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.261-264
    • /
    • 1997
  • In case of high speed and high mobility multibody tracked vehicle, it is hard to develop the realtime simulation model for track tension control because of the hundreds of highly nonlinear equations. In order to design more trustworthy realtime simulator for track tension control, it is necessary to use off-line tracked vehicle model. In this study, a step by step procedure is presented to develop realtime simulation model based on off-line tracked vehicle model. Simulation results show that modified off-line multibody tracked vehicle model can be used for real time simulation to control the track tension.

  • PDF

Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems (고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

Technology of Dimensional Control for Different Thickness Strip in Hot Strip Finishing Mills (열간 마무리압연에서 이종두께 강판의 치수제어기술)

  • Lee, Sang Ho;Park, Hong Bae;Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.735-741
    • /
    • 2015
  • In this paper, we suggest a dimensional controller to produce a different thickness strip without adding production facilities at the same steel. We describe the model for the non-linear thickness and speed setup, and drive a variation of the speed and thickness with Talyor expansion. The control algorithm is composed of 8 steps and the transient condition is added in order to maintain a mass flow between stands. A simulator is developed in order to verify the algorithm, and includes a non-linear rolling model, the tension model, AGC model, the disturbance model, and so on. From the simulation results by disturbances, we show that the thickness, tension and looper angle are converged to the set condition when we change the rolling conditions.

Development of Hot Rolling Process Analysis Simulator and Its Application(II) (열간압연 공정 해석용 시뮬레이터의 개발과 응용(II))

  • 이원호;이상룡
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.78-91
    • /
    • 1999
  • The endless hot rolling has been focused as an innovative process technology for increasing the productivity drastically and reducing the imperfection of quality in hot rolled steel strip. To realize it in actual mill, a lots of new facilities such as bar coiler, movable LASER welder and high speed strip shear should be equipped. And also it is necessary to develop the control technique for changing the roll gap and rolling speed during rolling, which is named as Flying Gap and Speed Change control technology. To prevent a strip rupture caused by excessive tension, it is very important to minimize fluctuations in strip thickness and intension during FGSC control. In this paper, the mathematical model for FGSC control algorithm was suggested and dynamic simulation is performed to accertain the effect of suggested control method on fluctuations in strip thickness and tension. For endless hot rolling simulation, a lots of FGSC control situations, for instance - strip thickness change from strip to strip - strip width change from strip to strip - carbon content change from strip to strip are considered.

  • PDF

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

RHC based Looper Control for Hot Strip Mill (RHC를 기반으로 하는 열간압연 루퍼 제어)

  • Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.295-300
    • /
    • 2008
  • In this paper, a new looper controller is proposed to minimize the tension variation of a strip in the hot strip finishing mill. The proposed control technology is based on a receding horizon control (RHC) to satisfy the constraints on the control input/state variables. The finite terminal weighting matrix is used instead of the terminal equality constraint. The closed loop stability of the RHC for the looper system is analyzed to guarantee the monotonicity of the optimal cost. Furthermore, the RHC is combined with a 4SID(Subspace-based State Space System Identification) model identifier to improve the robustness for the parameter variation and the disturbance of an actuator. As a result, it is shown through a computer simulation that the proposed control scheme satisfies the given constraints on the control inputs and states: roll speed, looper current, unit tension, and looper angle. The control scheme also diminishes the tension variation for the parameter variation and the disturbance as well.

Modeling for Tension Control of the Bio-Wrap Winding Machine (생분해성 랩 와인딩 기계의 장력제어를 위한 모델링)

  • Park W.C.;Kim H.S.;Kim D.I.;Yang S.M.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1901-1905
    • /
    • 2005
  • This Paper describes the mathematical modeling and control of the tension and the speed of moving Bio-wrap in a wrap winding machine. In winding process, important control specifications include the regulation of wrap tension and velocity. In this research, a tension and velocity model has been developed for winding processes. A prototype winding system has been constructed, and the controller has been implemented in a real time PC-based environment. The tension control system is modeled a MIMO of the two-input and four-output system. The performance of the modeled system has been evaluated via simulation using MATLAB and experiments.

  • PDF

Dynamic Modeling and Analysis of Control Systems for Skin Pass Mill (조질 압연기의 동적 모델링과 제어시스템 분석)

  • 이규택;이원호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.316-316
    • /
    • 2000
  • SPM dynamic model was developed by using Bland & Ford formulas considered elastic zone in roll gap, gauge meter equation, tension equation, speed equation and actuator models. And SPM controllers of the field were done model ing. It was shown the efficiency of constant tension, rol1ing force and elongation controllers by the simulation program and it was recommended the proper gain to the controllers of the field.

  • PDF