본 논문은 SVM(support vector machine)을 이용한 음성인식기에 대해 효과적인 특징 파라메터를 제안한다. SVM은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있으며 최적의 특징 파라메터를 선택하기 위해 본 논문에서는 SVM을 이용한 음성인식기를 사용하여 PCA(principal component analysis), ICA(independent component analysis) 알고리즘을 적용하여 MFCC(met frequency cepstrum coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 ICA에 의한 특징 파라메터가 가장 우수한 성능을 나타내었으며 특징 공간에서 각 클래스의 분포도 또한 ICA가 가장 높은 선형 분별성을 나타내었다.
기존의 제한적 단어 인식과는 달리 무제한 단어 음성인식에 있어서는 방대한 용량의 단어 모델을 참조로 인식이 이루어지게 되어, 참조모델과 입력패턴과의 비교를 위한 탐색시간이 너무 길어지게 된다. 본 논문에서 제한하는 방법은 무제한 단어 음성인식 시스템을 구축하기 위해 선행되어야 하는 모음열 사전을 구축하는 것이다. 음성인식시 입력패턴과 참조모델에 속한 모든 단어와의 비교를 수행하지 않고, 입력패턴의 모음열을 인식한 후, 인식된 모음열 단어들만을 참조모델에서 인식 후보로 두어 인식을 수행하게 하여 시간적인 측면에서의 효율성을 기하는 것이다. 결과적으로 본 연구 방법은 무제한 단어 음성인식에서의 실시간 처리라는 점에 주 목적을 두었다.
본 논문에서는 영한 음차 변환을 이용한 음성인식 및 합성기를 구현하였다. 음성인식의 경우 CV(Consonant Vowel), VCCV, VCV, VV, VC 단위를 사용하였다. 위의 단위별로 미리 구축된 모델을 결합함으로써 무제한 음성인식 시스템을 구축하였다. 따라서 영한 음차 변환을 이용하게 되면 인식 대상이 영어단어일 경우에도 이를 한글 발음으로 변환한 후 그에 해당하는 모델을 생성함으로써 인식이 가능하다. 음성 합성기의 경우 합성에 필요한 한국어 음성 데이터 베이스를 구축하고, 입력되는 텍스트에 따라 이를 연결하여 합성음을 생성한다. 영어가 입력될 경우 영한 음차 변환을 이용하여 입력된 영어발음을 한글로 바꾸어 준 후 입력하게 되므로 별도의 영어 합성기 없이도 합성음을 생성할 수 있다.
본문에서는 예측형 회귀신경망과 HMM의 하이브리드 네트워크인 회귀신경망 예측 HMM을 구성하였다. 회귀신경망 예측 HMM은 예측형 회귀신경망을 HMM의 각 상태마다 예측기로 정의하여 일정치인 평균벡터 대신에 과거의 특징벡터의 영향을 받아 동적으로 변화하는 신경망에 의한 예측치를 이용하므로 학습패턴 설정자체가 시변성을 반영하는 동적 네트워크의 특성을 가진다. 따라서 음성과 같은 시계열 패턴의 인식에 유리하다. 회귀신경망 예측 HMM은 예측형 회귀신경망의 구조에 따라 Elman망 예측 HMM과 Jordan망 예측 HMM으로 구분하였다. 실험에서는 회귀신경망 예측 HMM의 상태수를 4, 5, 6으로 증가시켜 각 상태 수별로 예측차수 및 중간층 유니트 수의 변화에 따른 인식성능을 조사하였다. 실험결과 평가용. 데이터에 대하여 Elman망예측 HMM은 상태수가 6이고, 예측차수가 3차, 중간층 유니트의 수가 15차원일 때, Jordan망 예측 HMM의 경우 상태수가 5이고, 예측차수가 3차, 중간층 유니트의 수가 10차원일 때 각각 99.5%로 우수한 결과를 얻었다.
유성음원과 무성음원을 사용하는 음성부호화 방식에 있어서, 같은 프레임 안에 모음과 무성자음이 있는 경우에 음질저하 현상이 나타난다. 본 논문에서는 음질을 개선하기 위해 V/S/TSIUVC 스위칭, 개별피치 펄스와 TSIUVC 근사합성 방법을 사용한 새로운 멀티펄스 음성부호화 방식을 제시한다. TSIUVC는 영교차율과 개별피치 펄스에 의하여 추출되며, TSIUVC의 추출율은 여자와 남자음성에서 각각 91%와 95.2%를 얻었다. 여기에서 중요한 사실은 양질의 TSIUVC 합성 파형을 얻기 위해서는 0.547kHz 이하와 2.813kHz 이상의 주파수 정보를 사용하여야 한다. V/UV를 이용한 MPC와 V/S/TSIUVC를 이용한 FBD-MPC의 비교평가를 하였다. 실험결과, FBD-MPC의 음질이 MPC의 음질에 비하여 상당히 개선되었음을 알 수 있었다.
Speaker recognition is the technology that confirms the identification of speaker by using the characteristic of speech. Such technique is classified into speaker identification and speaker verification: The first method discriminates the speaker from the preregistered group and recognize the word, the second verifies the speaker who claims the identification. This method that extracts the information of speaker from the speech and confirms the individual identification becomes one of the most efficient technology as the service via telephone network is popularized. Some problems, however, must be solved for the real application as follows; The first thing is concerning that the safe method is necessary to reject the imposter because the recognition is not performed for the only preregistered customer. The second thing is about the fact that the characteristic of speech is changed as time goes by, So this fact causes the severe degradation of recognition rate and the inconvenience of users as the number of times to utter the text increases. The last thing is relating to the fact that the common characteristic among speakers causes the wrong recognition result. The silence parts being included the center of speech cause that identification rate is decreased. In this paper, to make improvement, We proposed identification rate can be improved by removing silence part before processing identification algorithm. The methods detecting speech area are zero crossing rate, energy of signal detect end point and starting point of the speech and process DTW algorithm by using two methods in this paper. As a result, the proposed method is obtained about 3% of improved recognition rate compare with the conventional methods.
본 연구에서는 음성전기변환기로서 다이나믹 마이크로폰과 디지털 신호처리기를 사용하고 성능분석을 통해 좋은 음성신호를 출력하는 방법을 다루었다. 음성음향시스템의 성능이라 함은 음성신호를 왜곡하지 않고 얼마나 원음 특성을 충실하게 증폭하여 확성하는가를 뜻한다. 마이크로폰의 주파수 응답특성을 측정한 후, 신호처리방법으로 표준마이크로폰 주파수 응답특성과 비교하여 주파수대역 별 보정치를 구하였다. 본 논문에 사용된 마이크로폰과 스피커는 일반적으로 사용되는 제품으로, 주파수응답특성을 구하고 기준치와 비교하여 필요한 보정치를 구하였다. 이와 같이 구한 마이크로폰과 스피커의 보정치는 디지털신호처리방법으로 처리하여 원신호음에 가깝게 보상하였다. 그리고 음성음원과 수음마이크 사이의 거리변화에 의한 음향특성변화보상에 관한 측정 결과도 비교적 좋은 결과를 얻었다.
독립성분분석을 사용한 암묵신호분리의 성능은 잔향이 존재하는 환경에서 잔류 누설 성분 (cross-talk) 때문에 현저히 저하된다. 본 논문에서는 잔류 누설 성분을 제거하기 위한 후처리 방법을 제안한다. 제안하는 방법은 주파수 영역에서의 변형된 NLMS(normalized least mean square) 필터를 사용하며 필터의 역할은 잔류 누설 성분을 유발하는 누설 경로를 추정하는 데 있다. 특정 채널에서 잔류하는 누설 성분은 상대 채널의 직접 성분에 해당되므로 관측되는 상대 채널의 입력신호를 이용하여 누설 경로를 추정할 수 있다. 변형된 NLMS 필터는 필터 입력 신호의 전력과 추정 오차 신호의 전력을 함께 고려하여 정규화한다. 특정 채널의 직접 신호 성분은 적응 필터에서 잡음처럼 동작하여 결국 적응필터가 오조정되기 때문에 제안하는 방법을 통해 적응필터의 오조정을 방지할 수 있다. 음성 신호를 사용한 컴퓨터 시뮬레이션 결과를 통해 제안하는 방법이 후처리를 사용하지 않은 경우에 비해 잡음 제거 성능(NRR)이 약 3dB 정도 개선되는 것을 확인 할 수 있다.
본 논문에서는 이동통신 시스템에서 사용할 수 있는 잡음에 강인하면서 음질이 개선된 QCELP 코드북 검색을 제안한다. 기존 QCELP는 고정 코드 북을 한 번 검색하지만, 본 논문에서는 두 번에서 다섯 번까지 검색을 하고 이를 실험해 본 결과 두 번 검색이 전송률에 따른 음질향상이 최적임을 알게 되었다. 따라서 본 논문에서는 두 번의 정밀 양자화를 통해 여기신호를 상세히 나타내므로써 음질을 향상시키는 개선된 QCELP 부호화기를 제안한다. 실험에서 잡음을 고려하지 않은 환경(강의실, 가정집, 거리, 연구실 등)에서 얻은 음성을 입력자료로 사용하고, 음질은 SNR과 segSNR을 이용하여 측정하였다. 실험 결과, 개선된 QCELP는 기존 QCELP 보다 SNR, segSNR에서 각각 38.35%, 65.51% 향상되었다.
음성신호의 합성기법들 중에서 파형부호화법은 음질이 우수하기 때문에 분석에 의한 합성법으로 많이 사용되고 있다. 그렇지만 음원과 성도의 특성을 분리하지 않고 파형의 잉여분만을 제거한 후에 파형자체를 저장하기 때문에 규칙에 의한 합성기법으로 사용하기에는 어려움이 많다. 본 논문에서는 파형부호화법 중에서 선형 PCM부호화법으로 저장된 음성파형에 대해 피치주기를 조절할 수 있는 켑스트럼 분석법을 제안하여 파형자체의 음원을 분리하지 않고 피치주기를 변경시킬 수 있는 새로운 피치 변경법을 제안하였다. 따라서 음질이 우수한 파형부호화 합성법으로 규칙에 의한 합성을 수행할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.