We have developed a realtime phonetic typewriter implemented on IBM PC with sound card based on Windows 95. In this system, analyzing of speech signal, learning of neural network, labeling of output neurons and visualizing of recognition results are performed on realtime. The developing environment for speech processing is established by adding various functions, such as editing, saving, loading of speech data and 3-D or gray level displaying of spectrogram. Recognition experimental using Korean phone had a 71.42% for 13 basic consonant and 90.01% for 7 basic vowel accuracy.
In speech signal processing, it is necessary to detect exactly the pitch. The algorithms of pitch extraction with have been proposed until now are difficult to detect pitches over wide range speech signals. In this paper, thus, we proposed a new pitch detection algorithm that used a low pass filter with variable bandwidth. It is the method that preprosses to find the first formant of speech signals by the FFT at each frame and detects the pitches for signals LPFed with the cut off frequency according to the first formant. Applying the method, we obtained the pitch contours, improving the accuracy of pitch detection in some noise environments.
파킨슨병 환자에게는 언어 장애가 만연하기 때문에 이러한 환자에게 적합한 음성인식 시스템이 필요하다. 본 논문에서는 파킨슨병 환자의 음성을 효과적으로 인식하는 음성인식 시스템을 제안한다. 음성인식 시스템은 먼저 건강한 사람의 음성 데이터를 사용하여 Globalformer를 사전 학습한 다음 상대적으로 매우 작은 양의 파킨슨병 환자의 음성 데이터를 사용하여 Globalformer를 미세 조정한다. 실험에는 AI 허브에서 구축한 건강한 사람의 음성 데이터셋과 인하대병원에서 수집한 파킨슨병 환자의 음성 데이터셋이 사용되어졌다. 실험 결과 제안된 음성인식 시스템은 22.15 %의 Character Error Rate(CER)으로 파킨슨병 환자의 음성을 인식하였으며, 다른 방법에 비해 우수한 인식률을 보였다.
본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.
We propose a new approach to control a biped robot motion based on iterative learning of voice command for the implementation of smart factory. The real-time processing of speech signal is very important for high-speed and precise automatic voice recognition technology. Recently, voice recognition is being used for intelligent robot control, artificial life, wireless communication and IoT application. In order to extract valuable information from the speech signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. Basic method used for extracting the features of the voice signal is to find the Mel frequency cepstral coefficients. Mel-frequency cepstral coefficients are the coefficients that collectively represent the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The reliability of voice command to control of the biped robot's motion is illustrated by computer simulation and experiment for biped walking robot with 24 joint.
This paper proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex. the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to set of three states pulse-cord train relative to the original ECG signal. The pulse-cord train has the advantage of easy implementation in digital hardware circuits to achive automated ECG diagnosis. The algorithm performs very well feature extraction in arrythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contration) detection has a at least 90 percent sensityvity for arrythmia data.
음성 변환은 다양한 음성 처리 응용에 적용될 수 있으며, 음성 인식을 위한 학습 데이터 증강에도 중요한 역할을 할 수 있다. 기존의 방법은 음성 합성을 이용하여 음성 변환을 수행하는 구조를 사용하여 멜 필터뱅크가 중요한 파라미터로 활용된다. 멜 필터뱅크는 뉴럴 네트워크 학습의 편리성 및 빠른 연산 속도를 제공하지만, 자연스러운 음성파형을 생성하기 위해서는 보코더를 필요로 한다. 또한, 이 방법은 음성 인식을 위한 다양한 데이터를 얻는데 효과적이지 않다. 이 문제를 해결하기 위해 본 논문은 원형 스펙트럼을 사용하여 음성 신호 자체의 변환을 시도하였고, 어텐션 메커니즘으로 스펙트럼 성분 사이의 관계를 효율적으로 찾아내어 변환을 위한 자질을 학습할 수 있는 transformer 네트워크 기반 딥러닝 구조를 제안하였다. 영어 숫자로 구성된 TIDIGITS 데이터를 사용하여 개별 숫자 변환 모델을 학습하였고, 연속 숫자 음성 변환 디코더를 통한 결과를 평가하였다. 30명의 청취 평가자를 모집하여 변환된 음성의 자연성과 유사성에 대해 평가를 진행하였고, 자연성 3.52±0.22 및 유사성 3.89±0.19 품질의 성능을 얻었다.
Although it is well documented that patients with cochlear implant experience hearing difficulties when processing their first language, very little is known whether or not and to what extent cochlear implant patients recognize segments in a second language. This preliminary study examines how Korean learners of English identify English segments in a normal hearing and cochlear implant simulation conditions. Participants heard English vowels and consonants in the following three conditions: normal hearing condition, 12-channel noise vocoding with 0mm spectral shift, and 12-channel noise vocoding with 3mm spectral shift. Results confirmed that nonnative listeners could also retrieve spectral information from vocoded speech signal, as they recognized vowel features fairly accurately despite the vocoding. In contrast, the intelligibility of manner and place features of consonants was significantly decreased by vocoding. In addition, we found that spectral shift affected listeners' vowel recognition, probably because information regarding F1 is diminished by spectral shifting. Results suggest that patients with cochlear implant and normal hearing second language learners would experience different patterns of listening errors when processing their second language(s).
MFCC는 음성 신호 처리에서 귀중한 특징 벡터들 중 하나이다. MFCC에서 명백한 결점은 푸리에 변환의 크기를 취함에 의해 위상 정보가 손실된다는 것이다. 이 논문에서 우리는 푸리에 변환의 실수부와 허수부 크기를 따로 취급함으로써 위상 정보를 활용하는 방법을 생각한다. 퍼지 벡터 양자화와 은닉 마코브 모델을 이용한 음성인식에 이 방법을 적용함으로써, 종전 방법에 비해 음성 인식 오류율을 줄일 수 있음을 보인다. 우리는 또한 수치해석을 통하여, FFT의 실수부와 허수부 각각에서 6개의 성분을 취하여 모두 12개의 MFCC 성분을 사용하는 것이 음성인식에 최적임을 보인다.
본 논문에서는 음성인식 시스템에서의 잡음 처리 기술로서 SNR정규화와 RAS를 결합한 방법을 사용하여 여러 가지 잡음 처리 방법을 연구하여 인식 시스템의 성능을 개선하였다. 인식 시스템으로는 범용 DSP (TI사의 TM9320C31)가 내장된 모듈을 사용하였다. 실험에 사용된 인식 단어 샘플은 일반 사무 및 컴퓨터의 명령을 위한 60단어이며. 일반환경에서 잡음과 함께 가상의 여러 유색 잡음을 고려하여 샘플된 데이터를 시뮬레이션 하였다. 녹음된 데이터에 대한 컴퓨터 시뮬레이션 상에서 잡음 처리 방법으로 SNR정규화와 스펙트럼 차감법을 결합하여 실험한 경우 최고 94.61%의 높은 인식 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.