• 제목/요약/키워드: speech feature extraction

검색결과 155건 처리시간 0.025초

전화 음성 인식을 위한 특징 추출 방법 비교 (Comparison of Feature Extraction Methods for the Telephone Speech Recognition)

  • 전원석;신원호;김원구;이충용;윤대희
    • 한국음향학회지
    • /
    • 제17권7호
    • /
    • pp.42-49
    • /
    • 1998
  • 본 논문에서는 전화망 환경에서 음성 인식 성능을 개선하기 위한 특징 벡터 추출 단계에서의 처리 방법들을 연구하였다. 먼저, 고립 단어 인식 시스템에서 채널 왜곡 보상 방 법들을 단어 모델과 문맥 독립 음소 모델에 대하여 인식 실험을 하였다. 켑스트럼 평균 차 감법, RASTA 처리, 켑스트럼-시간 행렬을 실험하였으며, 인식 모델에 따른 각 알고리즘의 성능을 비교하였다. 둘째로, 문맥 독립 음소 모델을 이용한 인식 시스템의 성능 향상을 위하 여 정적 특징 벡터에 대하여 주성분 분석 방법(principal component analysis)과 선형 판별 분석(linear discriminant analysis)과 같은 선형 변환 방법을 적용하여 분별력이 높은 벡터 공간으로 변환함으로써 인식 성능을 향상시켰다. 또한 선형 변환 방법을 켑스트럼 평균 차 감법과 결합하여 더욱 뛰어난 성능을 보여주었다.

  • PDF

강인한 음성인식을 위한 MMSE-STSA기반 후처리 가중필터뱅크분석을 통한 특징추출 (Feature Extraction through the post processing of WFBA based on MMSE-STSA for Robust Speech Recognition)

  • 정성윤;배건성
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.39-42
    • /
    • 2004
  • 본 논문에서는, 잡음음성에 강인한 음성인식을 위한 특징추출 방법을 제시한다. 제시한 방법은 2 단계 잡음제거 과정으로 구성되어 있다. 첫번째 단계는 MMSE-STSA 음성개선기법을 통해 잡음음성신호를 개선시키는 과정이고, 두 번째 단계는, MMSE-STSA 의 개선된 음성에 후처리 가중필터뱅크분석을 통해 잔여잡음의 영향을 감소시키는 과정이다. 제안한 방법의 성능평가를 위해, AURORA2의 잡음음성 DB 중 테스트 집합 A 에 대해 인식실험을 수행하고, 결과를 기존 방법들과 비교, 검토한다.

  • PDF

Intensified Sentiment Analysis of Customer Product Reviews Using Acoustic and Textual Features

  • Govindaraj, Sureshkumar;Gopalakrishnan, Kumaravelan
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.494-501
    • /
    • 2016
  • Sentiment analysis incorporates natural language processing and artificial intelligence and has evolved as an important research area. Sentiment analysis on product reviews has been used in widespread applications to improve customer retention and business processes. In this paper, we propose a method for performing an intensified sentiment analysis on customer product reviews. The method involves the extraction of two feature sets from each of the given customer product reviews, a set of acoustic features (representing emotions) and a set of lexical features (representing sentiments). These sets are then combined and used in a supervised classifier to predict the sentiments of customers. We use an audio speech dataset prepared from Amazon product reviews and downloaded from the YouTube portal for the purposes of our experimental evaluations.

웨이블렛 변환을 이용한 음성특징 추출에 관한 연구 (A Study on Feature Extraction using Wavelet Transform for Speech Recognition)

  • 정의준;장성욱;양성일;권영헌
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.33-36
    • /
    • 2001
  • 본 논문에서는 기존의 음성인식에서 사용하는 특징벡터인 MFCC(Mel-Frequency Cepstral Cefficients)를 대신하여 웨이블렛 변환을 이용한 새로운 특징벡터를 추출하는 방법을 제안한다. 새 특징벡터로는 MRA(Multi-Resolution Analysis)를 이용하여 구성하였다. 웨이블렛 변환을 이용한 새로운 특징벡터의 추출 목적은 시간축과 주파수축에서의 더 좋은 해상도를 가지는 성질을 이용하는 것이다. 실험결과에서 웨이블렛 변환을 이용한 새로운 특징벡터를 이용한 인식이 기존의 방식보다 더 좋은 인식률을 보이고 있음을 확인하였다.

  • PDF

Dysarthric speaker identification with different degrees of dysarthria severity using deep belief networks

  • Farhadipour, Aref;Veisi, Hadi;Asgari, Mohammad;Keyvanrad, Mohammad Ali
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.643-652
    • /
    • 2018
  • Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature-extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well-known Mel-frequency cepstral coefficient features. For classification purposes, the use of a multi-layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text-dependent and text-independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.

안면근육 표면근전도 신호기반 근육 조합 최적화를 통한 단모음인식 (Monophthong Recognition Optimizing Muscle Mixing Based on Facial Surface EMG Signals)

  • 이병현;류재환;이미란;김덕환
    • 전자공학회논문지
    • /
    • 제53권3호
    • /
    • pp.143-150
    • /
    • 2016
  • 본 논문에서는 안면근육 표면근전도를 기반으로 근육 조합 최적화를 통한 한국어 단모음 인식 방법을 제안한다. 표면근전도 신호는 한국어 단모음 발음에 따라 서로 다른 패턴과 근육 활성도를 보였다. 이전 연구에서 높은 인식 정확도를 보였던 RMS, VAR, MMAV1, MMAV2와 Cepstral Coefficients를 특징 추출 알고리즘으로 사용하였으며, QDA(Quadratic Discriminant Analysis)와 HMM(Hidden Markov Model)으로 한국어 단모음을 분류하였다. 트레이닝 단계에서 입력 받은 데이터로 근육조합을 최적화하고, 최적화 결과를 인식단계에 적용한다. 이때, 새로운 근전도 신호를 입력받고 한국어 단모음을 최종 인식한다. 실험결과 제안한 방법의 인식 정확도가 QDA에서 평균 85.7%, HMM에서 평균 75.1%를 보였다.

악성댓글 판별의 성능 향상을 위한 품사 자질에 대한 분석 연구 (An analysis study on the quality of article to improve the performance of hate comments discrimination)

  • 김형주;문종민;김판구
    • 스마트미디어저널
    • /
    • 제10권4호
    • /
    • pp.71-79
    • /
    • 2021
  • 인터넷의 사용이 광범위 해져감에 따라 변화되는 사회적 측면 중 하나는 온라인 공간에서의 의사소통이다. 과거에는 물리적으로 같은 공간에 있을 때를 제외하고는 일대일 대화만 원격으로 가능했지만, 요즘은 게시판이나 커뮤니티, 소셜네트워크서비스(SNS) 등을 통해 다수의 사람들과 원격으로 소통할 수 있는 기술이 발달했다. 이러한 정보통신망의 발달로 생활이 편리해지고, 동시에 급격한 정보교류에 따른 피해도 끊임없이 증가하고 있다. 최근에는 연예인뿐 아니라 인플루언서 등 인터넷에서 인지도가 높은 특정인에게 성적인 메시지를 보내거나 인신공격을 가하는 등의 사이버 범죄가 발생하고 있으며, 이들 사이버 범죄에 노출된 이들 중 일부는 극단적인 선택을 하기도 하였다. 본 논문에서는 악성 댓글로 인한 피해를 줄이기 위해 음성 부분별 기능추출을 통한 차별적 악성 댓글의 성능향상 방안을 연구하였다.

한국어 음성인식 플랫폼 (ECHOS) 개발 (Development of a Korean Speech Recognition Platform (ECHOS))

  • 권오욱;권석봉;장규철;윤성락;김용래;장광동;김회린;유창동;김봉완;이용주
    • 한국음향학회지
    • /
    • 제24권8호
    • /
    • pp.498-504
    • /
    • 2005
  • 교육 및 연구 목적을 위하여 개발된 한국어 음성인식 플랫폼인 ECHOS를 소개한다. 음성인식을 위한 기본 모듈을 제공하는 BCHOS는 이해하기 쉽고 간단한 객체지향 구조를 가지며, 표준 템플릿 라이브러리 (STL)를 이용한 C++ 언어로 구현되었다. 입력은 8또는 16 kHz로 샘플링된 디지털 음성 데이터이며. 출력은 1-beat 인식결과, N-best 인식결과 및 word graph이다. ECHOS는 MFCC와 PLP 특징추출, HMM에 기반한 음향모델, n-gram 언어모델, 유한상태망 (FSN)과 렉시컬트리를 지원하는 탐색알고리듬으로 구성되며, 고립단어인식으로부터 대어휘 연속음성인식에 이르는 다양한 태스크를 처리할 수 있다. 플랫폼의 동작을 검증하기 위하여 ECHOS와 hidden Markov model toolkit (HTK)의 성능을 비교한다. ECHOS는 FSN 명령어 인식 태스크에서 HTK와 거의 비슷한 인식률을 나타내고 인식시간은 객체지향 구현 때문에 약 2배 정도 증가한다. 8000단어 연속음성인식에서는 HTK와 달리 렉시컬트리 탐색 알고리듬을 사용함으로써 단어오류율은 $40\%$ 증가하나 인식시간은 0.5배로 감소한다.

파형 시퀀스의 공통 특징 추출 기반 모음 'ㅏ' 인식 구현 (Implementation of Korean Vowel 'ㅏ' Recognition based on Common Feature Extraction of Waveform Sequence)

  • 노원빈;이종우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권11호
    • /
    • pp.567-572
    • /
    • 2014
  • 최근 네트워크와 컴퓨팅 기술의 발달로 정보기기가 소형화되고 이동성이 중요시되면서 간편하게 제어할 수 있는 음성 인식에 대한 수요가 증가하고 있다. 본 논문은 음성 인식 시스템의 일부로써 한국어 음소 중 모음 'ㅏ' 인식에 대한 연구 결과를 제시한다. 음소는 음성을 구성하고 있는 최소단위로서 음성을 인식하는데 매우 중요한 역할을 한다. 그러나 각각의 음소들을 정확하게 인식하려면 발음의 다양성 등으로 인해 많은 어려움이 존재한다. 본 논문에서는 한국어 음소 중 모음 'ㅏ'를 인식하기 위한 간단하고도 새로운 방식을 제안한다. 제안된 'ㅏ' 인식 휴리스틱은 파형 시퀀스의 공통 특징 추출을 기반으로 이루어졌으며, 이는 기존의 복잡한 방법에 비해 간단하면서도 실험 결과 90% 이상의 성공률로 'ㅏ'를 인식하는 것을 확인하였다.

DHMM 음성 인식 시스템을 위한 양자화 기반의 화자 정규화 (Quantization Based Speaker Normalization for DHMM Speech Recognition System)

  • 신옥근
    • 한국음향학회지
    • /
    • 제22권4호
    • /
    • pp.299-307
    • /
    • 2003
  • 화자독립 음성인식기에서 화자사이의 성도 길이의 영향을 최소화시켜 인식 성능을 개선하는 화자 정규화에 대한 많은 연구가 있어 왔다. 본 연구에서는 벡터양자화기를 이용하여 화자 검증이 가능하다는 사실에 착안하여 벡터 양자화기를 이용한 비교적 간단한 선형 워핑 화자정규화방법을 제안한다. 제안하는 방법에서는 먼저 정규화에 이용될 최적의 코드북을 생성한 다음, 이 코드 북을 이용하여 화자의 선형 워핑계수를 추출하고 추출된 워핑계수는 멜 켑스트럼 추출시에 사용되는 멜스케일 필터뱅크를 워핑하기 위해 이용된다. 본고에서 제안한 워핑계수 추출 및 적용 방법의 성능을 확인하기 위해 이산 HMM을 이용한 13가지의 단음절 한글 숫자음 인식기를 이용하여 인식실험을 수행하였으며, 실험 결과 약 29%의 오인식률 감소를 보여 제안하는 화자 정규화방법이 다른 라인서치 워핑계수추출 방법보다 간단한 동시에 효용가치가 있음을 확인하였다.