뉴로모픽 아키텍처에서 동작하는 SNN (Spiking Neural Network) 은 인간의 신경망을 모방하여 만들어졌다. 뉴로모픽 아키텍처 기반의 뉴로모픽 컴퓨팅은 GPU를 이용한 딥러닝 기법보다 상대적으로 낮은 전력을 요구한다. 이와 같은 이유로 뉴로모픽 아키텍처를 이용하여 다양한 인공지능 모델을 지원하고자 하는 연구가 활발히 일어나고 있다. 본 논문에서는 음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반의 음성 인식 모델의 성능 분석을 진행하였다. 실험 결과 푸리에 변환 기반 음성 데이터 전처리시 최대 84% 정도의 인식 정확도 성능을 보임을 확인하였다. 따라서 뉴로모픽 아키텍처 기반의 음성 인식 서비스가 효과적으로 활용될 수 있음을 확인하였다.
본 논문은 음성 데이터를 QR 코드에 입력 및 전송하는 기법을 연구하기 위해 실생활에 가장 많이 사용되는 AMR 음성 데이터를 분석한 결과를 제공한다. AMR은 HEADER와 Speech Data로 구성되어 있고, 비트 형식으로 전송되고 있으며 총 8개의 비트 전송률 모드를 갖고 있다. HEADER에는 Speech Data의 모드 정보가 포함되어 있으며 모드에 따라 Speech Data의 길이는 달라진다. 그 중 QR 코드에 삽입하기 가장 적절한 전송률 모드를 선택하고 해당 모드에 대한 분석을 제공한다. 각 모드에 대한 분석 및 실험을 통해 추후 음성 데이터에 대해 더 높은 압축률을 보이는 것이 최종 목표이다. 그럼으로써 음성 데이터를 보다 효율적으로 전송할 수 있다는 점에서 성능 개선을 보인다.
Deafs train articulation by observing mouth of a tutor, sensing tactually the motions of the vocal organs, or using speech training aids. Present speech training aids for deafs can measure only single speech parameter, or display only frequency spectra in histogram of pseudo-color. In this study, a speech training aids that can display subject's articulation in the form of a cross section of the vocal organs and other speech parameters together in a single system is to be developed and this system makes a subject know where to correct. For our objective, first, speech production mechanism is assumed to be AR model in order to estimate articulatory motions of the vocal organs from speech signal. Next, a vocal tract profile model using LP analysis is made up. And using this model, articulatory motions for Korean vowels are estimated and displayed in the vocal tract profile graphics.
Velopharyngeal Insufficiency(VPI); the failure of velum, the lateral wall and the posterior pharyngeal wall to separate the nasal cavity from pharyngeal cavity during speech, can be caused by congenital conditions include cleft palate, submucous cleft palate and congenital palatal insufficiency. Speech problems of VPI are characterized by hypernasality, nasal air emission, increased nasal air flow and decreased intelligibility. These speech problems of VPI can be treated with the surgical procedure, the application of temporary prosthesis and speech therapy. Biofeedback technique with Nasometer is a speech treatment method of VPI that commonly used as one component of a comprehensive procedure for improvement of speech in patients with VPI. In this article describes a case of VPI treated by biofeedback technique with Nasometer; which showed satisfactory result in nasalance and formant analysis after the speech therapy during 9 months.
The PESQ is an objective speech quality evaluation measure that is known to have a high correlation with a subjective speech quality measure such as MOS. To examine whether it could be useful as an objective quality measure of synthetic speech, we carried out both subjective evaluation tests with MOS and DMOS and an objective evaluation test with PESQ for HMM-based Korean synthetic speech signals and analyzed the correlation between them. Experimental results have shown that the PESQ has correlations of 0.87 with MOS and 0.92 with DMOS. It means that the PESQ holds much promise for evaluating the quality of synthetic Korean speech.
This study analyzes the characteristics of good impression using speech manipulation scripts and investigates the characteristics of preferred speech voice. Fourty male and female college students participated in this study. They have been exposed to the Gyeongsang dialect spoken by their friends and family for more than 15 years. Two sample voices(1 male and 1 female), considered as giving good impression, were subject to voice analysis. Two students were asked to read the sample paragraph of 'Walking' and their voice samples were analyzed through Praat. The collected speech data were manipulated into 4 different sets by changing pitch level, degree of loudness and speech rate. First, both men and women received good impression more from pitch-lowered sound than from the original one. Second, men tended to receive good impression more from slightly louder voice than from the natural-pitched one. Third, it was shown that men often felt more drowned to a voice at slightly faster speech rate than at the original speech rate. Overall, both male and female listeners favored lower pitch over the original pitch. Men tended to prefer louder voice sound while women preferred less loud one. Men received better impression at a lower speech rate but women at a faster speech rate.
Detection of children with autism spectrum disorder (ASD) based on speech has relied on predefined feature sets due to their ease of use and the capabilities of speech analysis. However, clinical impressions may not be adequately captured due to the broad range and the large number of features included. This paper demonstrates that the knowledge-driven speech features (KDSFs) specifically tailored to the speech traits of ASD are more effective and efficient for detecting speech of ASD children from that of children with typical development (TD) than a predefined feature set, extended Geneva Minimalistic Acoustic Standard Parameter Set (eGeMAPS). The KDSFs encompass various speech characteristics related to frequency, voice quality, speech rate, and spectral features, that have been identified as corresponding to certain of their distinctive attributes of them. The speech dataset used for the experiments consists of 63 ASD children and 9 TD children. To alleviate the imbalance in the number of training utterances, a data augmentation technique was applied to TD children's utterances. The support vector machine (SVM) classifier trained with the KDSFs achieved an accuracy of 91.25%, surpassing the 88.08% obtained using the predefined set. This result underscores the importance of incorporating domain knowledge in the development of speech technologies for individuals with disorders.
이 논문에서는 배경 잡음이 포함되는 환경에서 강인한 음성 인식을 하기 위한 전처리 단계로서 쓰이는 목표 음성 향상 방법을 제안한다. 보조 함수 기반의 독립 벡터 분석(Auxiliary-function-based Independent Vector Analysis, AuxIVA) 기법을 기반으로 가중 공분산 행렬에서 시간에 따라 변하는 분산에 의해서 가중치가 결정된다. 목표 음성에 대한 시간-주파수별 기여도를 나타내는 마스크를 통해 분산의 크기를 조절한다. 이러한 마스크는 음성 향상을 위해서 학습된 신경망 혹은 목표 화자로부터의 직선 성분의 기여도를 찾기 위한 확산성으로부터 추정할 수 있다. 이에 더하여 둘러싼 잡음에 대한 출력들은 서로 다차원 독립 성분 분석을 도입하여 의존성을 주어 안정적으로 노이즈 성분을 추출할 수 있다. 이 AuxIVA 기반의 목표 음성 추출 알고리즘은 또한 노이즈에 대해서 비음수 행렬 분해(Non-negative Matrix Factorization, NMF)를 비음수 텐서 분해(Non-negative Tensor Factorization, NTF)로 확장하여 독립 단순 행렬 분석(Independent Low-Rank Matrix Analysis, ILRMA)의 틀에서도 수행될 수 있다. 이러한 확장을 통해서 여전히 잡음 출력 채널에서의 채널간 의존성을 유지할 수 있다. CHiME-4데이터셋에 대한 실험 결과는 소개된 알고리즘에 대한 효과를 보여준다.
It has been posited that in English, native listeners use the Metrical Segmentation Strategy (MSS) for the segmentation of continuous speech. Strong syllables tend to be perceived as potential word onsets for English native speakers, which is due to the high proportion of strong syllables word-initially in the English vocabulary. This study investigates whether Koreans employ the same strategy when segmenting speech input in English. Word-spotting experiments were conducted using vowel-initial and consonant-initial bisyllabic targets embedded in nonsense trisyllables in Experiment 1 and 2, respectively. The effect of strong syllable was significant in the RT (reaction times) analysis but not in the error analysis. In both experiments, Korean listeners detected words more slowly when the word-initial syllable is strong (stressed) than when it is weak (unstressed). However, the error analysis showed that there was no effect of initial stress in Experiment 1 and in the item (F2) analysis in Experiment 2. Only the subject (F1) analysis in Experiment 2 showed that the participants made more errors when the word starts with a strong syllable. These findings suggest that Koran listeners do not use the Metrical Segmentation Strategy for segmenting English speech. They do not treat strong syllables as word beginnings, but rather have difficulties recognizing words when the word starts with a strong syllable. These results are discussed in terms of intonational properties of Korean prosodic phrases which are found to serve as lexical segmentation cues in the Korean language.
CSL, Model 4300B is a highly flexible audio processing package designed to provide a wide variety of speech analysis operations for both new and sophisticated users. Operations include 1) Data acquisition 2) File management 3) Graphics 4) Numerical display 5) Audio output 6) Signal editing 7) A variety of analysis functions, External module include 1) Input control B) Output control 3) Jacks, Software include 1) Wide range of speech display manipulation 2) Editing 3) Analysis (omitted)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.