• Title/Summary/Keyword: spectrum sharing systems

Search Result 111, Processing Time 0.024 seconds

The Interference Measurement Analysis between 3.412 GHz Band Broadcasting System and UWB Wireless Communication System

  • Song Hong-Jong;Kim Dong-Ku
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Ultra wideband(UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as Broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a orthogonal frequency division Multiplex UWB source and an impulse radio UWB source, to a Broadcasting transmission system. The receive power degradations of broadcasting system are presented. From these experimental results, we show that in all practical cases UWB system can coexist 35 m distance in-band broadcasting network.

An Effective Frequency Sharing Method using Spectrum Etiquette and Genetic Algorithm for the Coexistence of WRAN and WLAN in TV White Space (TVWS에서 스펙트럼 에티켓 및 GA를 사용한 WRAN과 WLAN의 효율적 주파수 공유기법)

  • Jeong, Won-Sik;Jang, Sung-Jeen;Yong, Seulbaro;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.83-94
    • /
    • 2012
  • Various wireless communication devices or network such as WRAN and WLAN will coexist in the TVWS(TV White Space). Because of this coexistence, the wireless devices which use the TVWS have to avoid interfering to not only licensed TV receiver and wireless microphone but also homogeneous or heterogeneous TVBD(TV Band Device)s. In this paper, we propose two frequency sharing methods for the coexistence of WLAN and WRAN in terms of interference reduction and throughput enhancement in both homogeneous and heterogeneous networks. One is the WRAN spectrum etiquette to provide more wide bandwidth for WLAN users and the other is the WLAN frequency selection methods to improve the throughput performance. The simulation results have confirmed the throughput improvement of the proposed methods. Moreover, the proposed methods is also applicable to improve the throughput performance and reduce interference of similar systems working in a cognitive manner.

Overall Cell Data Rates Analysis for Heterogenous Network Under Adaptive Modulation (이종 네트워크에서 적응변조 사용시 주파수 공유에 따른 데이터 전송률 분석)

  • Kwon, Tae-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.394-400
    • /
    • 2018
  • A heterogenous network is the one of key technologies for 5G, where one cell is divided into small cells in order to extend coverage and support high data rates. Divided cells aggravates the intercell interference problem as the cell edge increases. In order to avoid the intercell interference, it is the best to allocate the different spectrum for each cells. However, it also decreases the spectral efficiency. Therefore, the trade-off between the spectral efficiency gain and the signal quality loss by the interference should be considered for an efficient spectrum sharing in the heterogenous network. The adaptive modulation is the method to change the transmitted bit according to the channel quality, which is adopted as the standard in the most practical communication systems. It should be considered to applied the performance analysis into the practical systems. In this paper, the overall cell data rates is analyzed for the heterogenous network under the adaptive modulation. The Monte Carlo simulation results verify the correctness of the analysis.

Energy Efficiency Optimization for multiuser OFDM-based Cognitive Heterogeneous networks

  • Ning, Bing;Zhang, Aihua;Hao, Wanming;Li, Jianjun;Yang, Shouyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2873-2892
    • /
    • 2019
  • Reducing the interference to the licensed mobile users and obtaining the energy efficiency are key issues in cognitive heterogeneous networks. A corresponding rate loss constraint is proposed to be used for the sensing-based spectrum sharing (SBSS) model in cognitive heterogeneous networks in this paper. Resource allocation optimization strategy is designed for the maximum energy efficiency under the proposed interference constraint together with average transmission power constraint. An efficiency algorithm is studied to maximize energy efficiency due to the nonconvex optimal problem. Furthermore, the relationship between the proposed protection criterion and the conventional interference constraint strategy under imperfect sensing condition for the SBSS model is also investigated, and we found that the conventional interference threshold can be regarded as the upper bound of the maximum rate loss that the primary user could tolerate. Simulation results have shown the effectiveness of the proposed protection criterion overcome the conventional interference power constraint.

Erlang Capacity of Cognitive Radio Systems Utilizing Buffer for Spectrum Handoff Calls (스펙트럼 핸드오프 호를 위해 버퍼를 활용하는 무선인지시스템의 얼랑 용량)

  • Pham, Thi Hong Chau;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.145-150
    • /
    • 2010
  • In this paper, the performance of cognitive radio network is analyzed in terms of Erlang capacity. To improve the Erlang capacity with respect to primary user (PU) and secondary user (SU) traffic, we propose an efficient radio resource management scheme utilizing the buffer for new SUs and interrupted SUs. Markov model is developed, and analyzed to derive the performances of the proposed spectrum sharing scheme in both primary system and secondary system. To determine the Erlang capacity region, the blocking probability, the forced termination probability and the non-completion probability are calculated. Simulation results provide insight into the advantages of the buffer utilization. It is observed that the supportable traffic loads of PU and SU can be increased significantly according to the buffer length.

Joint Spectrum and Power Allocation for Green D2D Communication with Physical Layer Security Consideration

  • Chen, Hualiang;Cai, Yueming;Wu, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1057-1073
    • /
    • 2015
  • In this paper, we consider cooperative D2D communications in cellular networks. More precisely, a cellular user leases part of its spectrum to facilitate the D2D communication with a goal of improving the energy efficiency of a D2D pair. However the D2D pair is untrusted to the cellular user, such resource sharing may result in the information of this cellular user unsecured. In order to motivate the cellular user's generosity, this D2D pair needs to help the cellular user maintain a target secrecy rate. To address this issue, we formulate a joint spectrum and power allocation problem to maximize the energy efficiency of the D2D communication while guaranteeing the physical layer security of the cellular user. Then, a theorem is proved to indicate the best resource allocation strategy, and accordingly, an algorithm is proposed to find the best solution to this resource allocation problem. Numerical results are finally presented to verify the validity and effectiveness of the proposed algorithm.

Cooperative Multi-relay Scheme for Secondary Spectrum Access

  • Duy, Tran-Trung;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.273-288
    • /
    • 2010
  • In this paper, we propose a cooperative multi-relay scheme for a secondary system to achieve spectrum access along with a primary system. In the primary network, a primary transmitter (PT) transmits the primary signal to a primary receiver (PR). In the secondary network, N secondary transmitter-receiver pairs (ST-SR) selected by a centralized control unit (CCU) are ready to assist the primary network. In particular, in the first time slot, PT broadcasts the primary signal to PR, which is also received by STs and SRs. At STs, the primary signal is regenerated and linearly combined with the secondary signal by assigning fractions of the available power to the primary and secondary signals respectively. The combined signal is then broadcasted by STs in a predetermined order. In order to achieve diversity gain, STs, SRs and PT will combine received replicas of the primary signal, using selection combining technique (SC). We derive the exact outage probability for the primary network as well as the secondary network. The simulation results are presented to verify the theoretical analyses.

A Frequency-Sharing Method to Use Frequency Resources Efficiently (효율적인 주파수 이용을 위한 주파수 공유 방법)

  • Kang, Sang-Gee;Hwang, Taek-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1349-1355
    • /
    • 2008
  • Recently many short-range transceiver systems, such as ZigBee, Bluetooth and RFID(Radio Frequency Identification), have been developed. These systems are mostly low-power transceivers. In the near future many more low-power transceivers are appeared for WPAN(Wireless Personal Area Network) and interference mitigation technologies are necessary to the low-power transceivers for using frequency resources efficiently. In this paper we consider two methods for sharing frequency resources. The first case is that a frequency band previously assigned fer a certain system is shared and the second case is that the white frequency band is shared. We study the method and conditions for sharing frequency resources in the above two cases. When a frequency band is shared with ZigBee, RFID, DCP (Digital Cordless Phone) and Bluetooth as an example for the first case, the sharing conditions are investigated and the results are presented. We propose a balancing factor to maintain an equal transmitting conditions between systems having a different interference mitigation technique. In the interference simulation we use FH(Frequency Hopping) as a reference system and 0.9 of a balancing factor for LBT(Listen Before Talk) and 0.8 for DS(Direct Spreading). From the simulation results we know that a balancing factor reduces interference probability therefore many more systems can be operated in the same frequency bands compared with the case without using a balancing factor.

Sidelobe Suppression Technique in OFDM Systems for Spectrum Sharing (스펙트럼 공유를 위한 직교 주파수 분할 다중 (OFDM) 시스템에서의 사이드로브 억압 기법)

  • Hwang, Hu-Mor;Ahmed, Saleem
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1633-1637
    • /
    • 2009
  • We propose a new technique for sidelobe suppression in orthogonal frequency division multiplexing (OFDM) systems. Sidelobe suppression is an essential technique to design OFDM based overlay system. The proposed technique is based on the combination of the multiple choice sequence (MCS) with the conventional windowing of OFDM signal in time domain. The MCS is choosing the one sequence which has lowest power in sidelobes from the produced set of sequences. The main advantage of proposed technique is that it fully utilizes the available bandwidth to transmit data. Simulation results show that by combining MCS with conventional windowing technique, the sidelobes in OFDM system can be significantly reduced

A New Methodology for Estimating the Impact of Co-Channel Interference from High-Altitude Platforms to Terrestrial Systems

  • Milas Vasilis F.;Constantinou Philip
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • This paper addresses an in-depth analysis of the stratosphere-to-Earth co-channel interference produced by high-altitude platforms (HAPs) and proposes a new methodology for the evaluation of its impact to terrestrial systems in terms of fractional degradation in performance, taking into account parameters such as HAP's mobility, realistic distribution of azimuth and elevation angles of the terrestrial microwave links (TMLs), and gradual high-altitude platform network (HAPN) loading. Simulations performed for different HAPN configurations, prove that the implementation of the methodology proposed, may lead to a more efficient use of the spectrum shared between the two services.