• Title/Summary/Keyword: spectrum hole

Search Result 147, Processing Time 0.023 seconds

Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device (Poly(3-hexylthiophene) 발광소자의 금속전극 의존성)

  • 서부완;김주승;김형곤;이경섭;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF

Characteristic Study of X-ray convert material by Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 X선 변환물질의 특성 연구)

  • Kim, Jin-Young;Park, Ji-Koon;Kang, Sang-Sik;Kim, So-Young;Jung, Eun-Sun;Nam, Sang-Hee;Kang, Sin-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.418-421
    • /
    • 2003
  • Today, much terminologies such as noise spectrum, Sharpness, contrast, MTF had been defined for Image quality revaluation of radiation Image. Since development of Xeroradiography In the 1970s, Digital radiation detector that use amorphous selenium was developed. The aim of this research is to analyze physical phenomenon of digital radiation detector that use amorphous selenium. Result of Monte Carlo simulations on amorphous selenium based on physical properties(creation of electron-hole pairs) by induced x-ray are described. From the simulation, intrinsic point spread function(PSF) was found and used to observe modulation transfer function(MTF). We investigated how PSF and MTF changed with various x-ray energy. This result can be used to design digital x-ray detector based on a-Se.

  • PDF

Subwavelength Focusing of Light From a Metallic Slit Surrounded by Grooves with Chirped Period

  • Yoon Jaewoong;Choi Kiyoung;Song Seok Ho;Lee Gwansu
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.162-168
    • /
    • 2005
  • Extraordinary phenomena related to the transmission of light via metallic films with subwavelength holes and grooves are known to be due to resonant excitation and interference of surface waves. These waves make various surface structures to have optically effective responses. Further, a related study subject involves the control of light transmitted from a single hole or slit by surrounding it with diffractive structures. This paper reports on the effects of controlling light with a periodic groove structure with Fresnel-type chirping. In Fresnel-type chirping, diffracted surface waves are coherently converged into a focus, and it is designed considering the conditions of constructive interference and angular spectrum optimization under the assumption that the surface waves are composite diffracted evanescent waves with a well-defined in-plane wavenumber. The focusing ability of the chirped periodic structures is confirmed experimentally by two-beam attenuated total reflection coupling. Critical factors for achieving subwavelength foci and bounds on size of focal spots are discussed in terms of the simulation, which uses the FDTD algorithm.

Down the Rabbit Hole-Considerations for Ingested Foreign Bodies

  • Brown, Jerry;Kidder, Molly;Fabbrini, Abigail;deVries, Jonathan;Robertson, Jason;Chandler, Nicole;Wilsey, Michael
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.6
    • /
    • pp.619-623
    • /
    • 2019
  • We report the case of a seven-year-old boy with an ingested foreign body, which was retained within the appendix for a known duration of ten months, ultimately requiring appendectomy. The ingested foreign body was incidentally discovered by abdominal x-ray at an emergency room visit for constipation. Despite four bowel cleanouts, subsequent x-rays showed persistence of the foreign body in the right lower quadrant. While the patient did not have signs or symptoms of acute appendicitis, laparoscopic appendectomy was performed due to the risk of this foreign body causing appendicitis in the future. A small metallic object was found within the appendix upon removal. This case highlights the unique challenge presented by foreign body ingestions in non-verbal or developmentally challenged children and the importance of further diagnostic workup when concerns arise for potential retained foreign bodies.

Comb-spacing-swept Source Using Differential Polarization Delay Line for Interferometric 3-dimensional Imaging

  • Park, Sang Min;Park, So Young;Kim, Chang-Seok
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • We present a broad-bandwidth comb-spacing-swept source (CSWS) based on a differential polarization delay line (DPDL) for interferometric three-dimensional (3D) imaging. The comb spacing of the CSWS is repeatedly swept by the tunable DPDL in the multiwavelength source to provide depth-scanning optical coherence tomography (OCT). As the polarization differential delay of the DPDL is tuned from 5 to 15 ps, the comb spacing along the wavelength continuously varies from 1.6 to 0.53 nm, respectively. The wavelength range of various semiconductor optical amplifiers and the cavity feedback ratio of the tunable fiber coupler are experimentally selected to obtain optimal conditions for a broader 3-dB bandwidth of the multiwavelength spectrum and thus provide a higher axial resolution of $35{\mu}m$ in interferometric OCT imaging. The proposed CSWS-OCT has a simple imaging interferometer configuration without reference-path scanning and a simple imaging process without the complex Fourier transform. 3D surface images of a via-hole structure on a printed circuit board and the top surface of a coin were acquired.

Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.439-443
    • /
    • 2019
  • To improve the noise characteristics, software-based noise reduction algorithms are widely used in cadmium zinc telluride (CZT) pixelated semiconductor gamma camera system. The purpose of this study was to develop an improved median filtering algorithm using a thresholding method for noise reduction in a CZT pixelated semiconductor gamma camera system. The gamma camera system simulated is a CZT pixelated semiconductor detector with a pixel-matched parallel-hole collimator and the spatial resolution phatnom was designed with the Geant4 Application for Tomography Emission (GATE). In addition, a noise reduction algorithm with a median filter using an improved thresholding method is developed and we applied our proposed algorithm to an acquired spatial resolution phantom image. According to the results, the proposed median filter improved the noise characteristics compared to a conventional median filter. In particular, the average for normalized noise power spectrum, contrast to noise ratio, and coefficient of variation results using the proposed median filter were 10, 1.11, and 1.19 times better than results using conventional median filter, respectively. In conclusion, our results show that the proposed median filter using improved the thresholding method results in high imaging performance when applied in a CZT semiconductor gamma camera system.

Optimization of Electrical and Optical Properties of a-IZO Thin Film for High-Efficiency Solar Cells (고효율 태양전지용 a-IZO 박막의 전기적 및 광학적 특성 최적화에 관한 연구 )

  • Somin Park;Sungjin Jeong;Jiwon Choi;Youngkuk Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.49-55
    • /
    • 2023
  • The deposition of indium zinc oxide (IZO) thin films was carried out on substrate at room temperature by RF magnetron sputtering. The effects of substrate temperature, RF power and deposition pressure were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, structure, and transmittance. As the RF power increases, the resistivity gradually decreases, and the transmittance slightly decreases. For the variation of deposition pressure, the resistivity greatly increases, and the transmittance is decreased with increasing deposition pressure. As a result, it was demonstrated that an IZO film with the resistivity of 3.89 × 10-4 Ω∙cm, the hole mobility of 51.28 cm2/Vs, and the light transmittance of 86.89% in the visible spectrum at room temperature can be prepared without post-deposition annealing.

Monte Carlo simulations for gamma-ray spectroscopy using bismuth nanoparticle-containing plastic scintillators with spectral subtraction

  • Taeseob Lim ;Siwon Song ;Seunghyeon Kim ;Jae Hyung Park ;Jinhong Kim;Cheol Ho Pyeon;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3401-3408
    • /
    • 2023
  • In this study, we used the Monte Carlo N-Particle program to simulate the gamma-ray spectra obtained from plastic scintillators holes filled with bismuth nanoparticles. We confirmed that the incorporation of bismuth nanoparticles into a plastic scintillator enhances its performance for gamma-ray spectroscopy using the subtraction method. The subtracted energy spectra obtained from the bismuth-nanoparticle-incorporated and the original plastic scintillator exhibit a distinct energy peak that does not appear in the corresponding original spectra. We varied the diameter and depth of the bismuth-filled holes to determine the optimal hole design for gamma-ray spectroscopy using the subtraction method. We evaluated the energy resolutions of the energy peaks in the gamma-ray spectra to estimate the effects of the bismuth nanoparticles and determine their optimum volume in the plastic scintillator. In addition, we calculated the peak-to-total ratio of the energy spectrum to evaluate the energy measuring limit of the bismuth nanoparticle-containing plastic scintillator using the subtraction method.

Identification of Pb-Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology

  • Haolong Huang;Pingkun Cai;Wenbao Jia;Yan Zhang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1708-1717
    • /
    • 2023
  • The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.

Catadioptric Omnidirectional Optical System Using a Spherical Mirror with a Central Hole and a Plane Mirror for Visible Light (중심 구멍이 있는 구면거울과 평면거울을 이용한 가시광용 반사굴절식 전방위 광학계)

  • Seo, Hyeon Jin;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.2
    • /
    • pp.88-97
    • /
    • 2015
  • An omnidirectional optical system can be described as a special optical system that images in real time a panoramic image with an azimuthal angle of $360^{\circ}$ and the altitude angle corresponding to the upper and lower fields of view from the horizon line. In this paper, for easy fabrication and compact size, we designed and fabricated a catadioptric omnidirectional optical system consisting of the mirror part of a spherical mirror with a central hole (that is, obscuration), a plane mirror, the imaging lens part of 3 single spherical lenses, and a spherical doublet in the visible light spectrum. We evaluated its image performance by measuring the cut-off spatial frequency using automobile license plates, and the vertical field of view using an ISO 12233 chart. We achieved a catadioptric omnidirectional optical system with vertical field of view from $+53^{\circ}$ to $-17^{\circ}$ and an azimuthal angle of $360^{\circ}$. This optical system cleaniy imaged letters on a car's front license plate at the object distance of 3 meters, which corresponds to a cut-off spatial frequency of 135 lp/mm.