• Title/Summary/Keyword: spectrum allocation

Search Result 223, Processing Time 0.026 seconds

Resource Allocation for D2D Communication in Cellular Networks Based on Stochastic Geometry and Graph-coloring Theory

  • Xu, Fangmin;Zou, Pengkai;Wang, Haiquan;Cao, Haiyan;Fang, Xin;Hu, Zhirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4946-4960
    • /
    • 2020
  • In a device-to-device (D2D) underlaid cellular network, there exist two types of co-channel interference. One type is inter-layer interference caused by spectrum reuse between D2D transmitters and cellular users (CUEs). Another type is intra-layer interference caused by spectrum sharing among D2D pairs. To mitigate the inter-layer interference, we first derive the interference limited area (ILA) to protect the coverage probability of cellular users by modeling D2D users' location as a Poisson point process, where a D2D transmitter is allowed to reuse the spectrum of the CUE only if the D2D transmitter is outside the ILA of the CUE. To coordinate the intra-layer interference, the spectrum sharing criterion of D2D pairs is derived based on the (signal-to-interference ratio) SIR requirement of D2D communication. Based on this criterion, D2D pairs are allowed to share the spectrum when one D2D pair is far from another sufficiently. Furthermore, to maximize the energy efficiency of the system, a resource allocation scheme is proposed according to weighted graph coloring theory and the proposed ILA restriction. Simulation results show that our proposed scheme provides significant performance gains over the conventional scheme and the random allocation scheme.

An Adaptive Resource Allocation Scheme in Cognitive Radio Network Assisted Satellite (무선 인지 네트워크에서 위성을 이용한 적응적인 자원 할당 기법)

  • Lee, Seon-Yeong;Sohn, Sung-Hwan;Jang, Sung-Jin;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.5-11
    • /
    • 2009
  • In this paper, we propose our design of adaptive resource allocation in the cognitive radio network assisted by satellite to improve the performance of Cognitive Radio user. Most of today’s telecommunication network operates in a fixed, licensed frequency band using a specific spectrum access network. However, the spectrum is not always used all the time, all the band. It causes the inefficiency in the spectrum usage. Thus, cognitive radio network is proposed to solve these spectrum inefficiency problems. The cognitive radio users (secondary users) are coexistent with primary users (PUs) who are licensed. That cognitive radio network is considered as lower priority comparing with primary user. So, the operation of the cognitive radio network is limited to interference constraints. Especially, when the number of secondary users increases, CCI among SUs will increase as well as interference to PU. That motivates our objective to improve the performance even if cognitive radio users increase. To solve this problem, we suggest an adaptive resource allocation scheme to improve the performance of cognitive radio network assisted by satellite. Through this algorithm, we can improve the cognitive radio network performance. And the simulation results confirm the effectiveness of our proposed algorithm.

  • PDF

Joint Subcarriers and Power Allocation with Imperfect Spectrum Sensing for Cognitive D2D Wireless Multicast

  • Chen, Yueyun;Xu, Xiangyun;Lei, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1533-1546
    • /
    • 2013
  • Wireless multicast is considered as an effective transmission mode for the future mobile social contact services supported by Long Time Evolution (LTE). Though wireless multicast has an excellent resource efficiency, its performance suffers deterioration from the channel condition and wireless resource availability. Cognitive Radio (CR) and Device to Device (D2D) are two solutions to provide potential resource. However, resource allocation for cognitive wireless multicast based on D2D is still a great challenge for LTE social networks. In this paper, a joint sub-carriers and power allocation model based on D2D for general cognitive radio multicast (CR-D2D-MC) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) LTE systems. By opportunistically accessing the licensed spectrum, the maximized capacity for multiple cognitive multicast groups is achieved with the condition of the general scenario of imperfect spectrum sensing, the constrains of interference to primary users (PUs) and an upper-bound power of secondary users (SUs) acting as multicast source nodes. Furthermore, the fairness for multicast groups or unicast terminals is guaranteed by setting a lower-bound number of the subcarriers allocated to cognitive multicast groups. Lagrange duality algorithm is adopted to obtain the optimal solution to the proposed CR-D2D-MC model. The simulation results show that the proposed algorithm improves the performance of cognitive multicast groups and achieves a good balance between capacity and fairness.

A Fair Radio Resource Allocation Algorithm for Uplink of FBMC Based CR Systems

  • Jamal, Hosseinali;Ghorashi, Seyed Ali;Sadough, Seyed Mohammad-Sajad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1479-1495
    • /
    • 2012
  • Spectrum scarcity seems to be the most challenging issue to be solved in new wireless telecommunication services. It is shown that spectrum unavailability is mainly due to spectrum inefficient utilization and inappropriate physical layer execution rather than spectrum shortage. Daily increasing demand for new wireless services with higher data rate and QoS level makes the upgrade of the physical layer modulation techniques inevitable. Orthogonal Frequency Division Multiple Access (OFDMA) which utilizes multicarrier modulation to provide higher data rates with the capability of flexible resource allocation, although has widely been used in current wireless systems and standards, seems not to be the best candidate for cognitive radio systems. Filter Bank based Multi-Carrier (FBMC) is an evolutionary scheme with some advantages over the widely-used OFDM multicarrier technique. In this paper, we focus on the total throughput improvement of a cognitive radio network using FBMC modulation. Along with this modulation scheme, we propose a novel uplink radio resource allocation algorithm in which fairness issue is also considered. Moreover, the average throughput of the proposed FBMC based cognitive radio is compared to a conventional OFDM system in order to illustrate the efficiency of using FBMC in future cognitive radio systems. Simulation results show that in comparison with the state of the art two algorithms (namely, Shaat and Wang) our proposed algorithm achieves higher throughputs and a better fairness for cognitive radio applications.

Auction Design Strategies for Radio Spectrum Rights : Theory and Experience (주파수 재산권 경매방식의 설계 전략 : 이론과 경험)

  • 조성하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.485-499
    • /
    • 1999
  • Auctions are appealing market-type mechanisms because they can be deployed to solve the twin problems of resources pricing and allocation. Nonetheless the effectiveness of an auction mechanism in radio spectrum property rights should not be taken for granted. Policymakers need to be aware of the complexity of introducing market discipline in an area where none existed before. Auction design is critical to the success of the allocation process. However, a poorly designed auction mechanism can have detrimental effects on the spectrum rights allocation process. This study discusses some of the key elements and issues of auction design of radio spectrum rights for its efficient allocation. Particularly this study discusses, based on the existing auction theory and other countries' experiences, such issues as bidding rule, value interdependency and sequence of auction, information structure and asymmetric bidder, and wealth constraints and imperfect capital market.

  • PDF

Contract Theory Based Cooperative Spectrum Sharing with Joint Power and Bandwidth Optimization

  • Lu, Weidang;He, Chenxin;Lin, Yuanrong;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5803-5819
    • /
    • 2017
  • In this paper, we proposed a contract theory based cooperative spectrum sharing scheme with joint power and bandwidth optimization under asymmetric information, where the primary user (PU) does not know the secondary users' (SUs) private information. To improve performance, PU needs to provide incentives to stimulate nearby SUs to help forward its signal. By using contract theory, PU and SUs' negotiations are modeled as a labor market. PU and SUs act as the employer and employees, respectively. Specifically, SUs provide labor (i.e. the relay power, which can be used for forwarding PU's signal) in exchange for the reward (i.e. the spectrum access bandwidth which can be used for transmitting their own signals). PU needs to overcome a challenge how to balance the relationship between contributions and incentives for the SUs. We study the optimal contract design which consists of relay power and spectrum access bandwidth allocation. We show that the most efficient SUs will be hired by the PU to attend the cooperative communication. PU can achieve the same maximum utility as in the symmetric information scenario. Simulation results confirm that the utility of PU is significantly enhanced with our proposed cooperative spectrum sharing scheme.

A Distributed Multiple Spectrum Pricing Scheme for Optimality Support in Multiaccess Systems

  • Choi, Yong-Hoon;Sohaib, Khan;Kim, Hoon;Chang, Kap-Seok;Kang, Sung-Yeol;Han, Young-Nam
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.368-374
    • /
    • 2009
  • This paper focuses on a distributed multiple spectrum pricing scheme to maximize system capacity in next generation multiaccess systems, where multimode user equipments (MUEs) can connect simultaneously to multiple base stations (BSs) with multiple radio access technologies (RATs). The multi-price based scheme provides a distributed decision making for an optimal solution where radio resource allocations are determined by each MUE, unlike most centralized mechanisms where BS controls the whole radio resource. By the proposed optimal solution, MUEs can decide their share of spectrum bands and power allocation according to the spectrum price of each RAT, and at the same time the multiaccess system can achieve maximized total throughput. Numerical analysis shows that the proposed scheme achieves the maximal capacity by distributed resource allocation for the multiaccess system.

Policy Agendas for the Efficient Use of Public and Broadcast Spectrum (공공 및 방송주파수의 효율적 이용을 위한 정책 과제)

  • Yeon, Kwon-Hum;Kim, Yongkyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.8
    • /
    • pp.849-859
    • /
    • 2013
  • This paper explores the policy alternatives to promote efficient use of spectrums for public use and terrestrial broadcasting, which are essential to provide spectrum for mobile broadband services. To this end, recent overseas spectrum management policies are introduced and utilized to provide domestic policy alternatives. For the efficient use of spectrum for public use, policy alternatives such as detailed survey of current usage of spectrum for public use, levying the opportunity cost, installment of spectrum efficiency fund, providing incentives for the efficient use of spectrum for military use, and introduction of shared use are proposed. For the efficient use of spectrum for terrestrial broadcasting, short-term policy alternative such as change of contribution rate base of the broadcasting - telecommunications development fund is proposed. For long-term policy alternatives, change of spectrum provision from designation to allocation for the spectrum for commercial terrestrial broadcasting and introduction of administered incentive pricing to public terrestrial broadcasting are proposed.

Power Allocation and Performance Analysis for the Secondary User under Primary Outage Constraint in Cognitive Relay Network (Cognitive Relay 네트워크에서 일차 사용자의 Outage 제약 조건 하에서의 이차 사용자의 파워 할당 기법 및 성능 분석)

  • Kim, Hyung-Jong;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.46-51
    • /
    • 2012
  • In this paper, we investigate the power allocation for cognitive relay networks. Cognitive relay networks offer not only increasing spectral efficiency by spectrum sharing but also extending the coverage through the use of relays. For spectrum sharing, conventional works have assumed that secondary users know perfect channel information between the secondary and primary users. However, this channel information may be outdated at the secondary user because of the time-varying properties or feedback latency from the primary user. This causes the violation for interference constraint, and the secondary user cannot share the spectrum of the primary after all. To overcome this problem, we propose the power allocation scheme for the secondary user under the allowable primary user's outage probability constraint. Since the proposed power allocation scheme does not use the instantaneous channel information, the secondary users have lower feedback burden. In addition, the proposed scheme is also robust to the outdated channel environment.

Resource Allocation for Device-to-Device Communications Reusing Uplink in Cellular Networks

  • Radwan, Amr
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1468-1474
    • /
    • 2015
  • Efficient spectrum sharing is an important issue in Device-to-Device (D2D) communications underlaying cellular networks as it can mitigate the interference to cellular users and improve the performance of the systems. In this paper, we formulate the radio resource allocation in D2D communications as a mixed nonlinear integer programing. We show the formulated problem is NP-hard and thus a polynomial time algorithm to solve is not possible. Since such a problem is very hard to obtain the optimal solution within a short running time, we instead propose a fast heuristic suboptimal algorithm to mitigate the interference caused to cellular users and improve the performance of the systems. Simulation results are provided to evaluate the performance of the proposed algorithm.