• Title/Summary/Keyword: spectroscopy - optical astronomy

Search Result 54, Processing Time 0.028 seconds

Long-slit Spectroscopy of Parsec-scale Jets from YSOs

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2014
  • We present a study on the parsec-scale jets from young stellar objects using long-slit spectroscopic data obtained from Bohyunsan Optical Astronomy Observatory on 2012 - 2014. Through the position-velocity diagrams, we show the radial velocity variation, peak velocity and velocity width of the outflow from several T Tauri stars and Herbig Ae/Be star. $H{\alpha}$, [OI] 6300/6363, [NII] 6548/6584 and [SII] 6716/6731 emission lines are obtained and they show various velocity features. We also compare our result with other data from literatures.

  • PDF

Variability test of 9 AGNs slected from The Seoul Natioanl University AGN Monitoring Project

  • Cho, Wanjin;Woo, Jong-Hak;Son, Donghoon;Bae, Hyun-Jin;Jeon, Yiseul;Le, Huynh Anh;Park, Songyoun;Shin, Jaejin;Kim, Minjin;Park, Daeseong;Sung, Hyun-il;Gallo, Ellena;Hodges-Kluck, Edmund;Barth, Aaron;Treu, Tommaso;Malkan, Matt;Bennert, Vardha Nicola
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.76.4-77
    • /
    • 2017
  • We have been performing a long term AGN Monitoring project, to measure the time lag of H beta line with respect to AGN optical continuum based on the reverberation mapping method. From October 2015, 69 AGNs have been monitored with BVR band photometry, using the MDM 1.3m & 2.4m and LOAO 1m telescopes, and long-slit spectroscopy, using the Lick 3m and MDM 2.4m telescopes. In this poster, we report the preliminary results of the variability study of a subsample of 9 AGNs, particularly with a few of tentative time rag measurements between B band magnitude and H beta luminosity based on the 1st year data set from February 2016 - January 2017.

  • PDF

The Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Mingyu;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.64.3-65
    • /
    • 2016
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the Next Generation of small satellite series (NEXTSat). The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main observational targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. Two linear variable filters are used to realize the imaging spectroscopy with the spectral resolution of ~20. The mechanical structure is considered to endure the launching condition as well as the space environment. The compact dewar is confirmed to operate the infrared detector as well as filters at 80K stage. The electronics is tested to obtain and process the signal from infrared sensor and to communicate with the satellite. After the test and calibration of the engineering qualification model (EQM), the flight model of the NSS is assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the test results of the flight model of the NISS.

  • PDF

Qualitative Analysis and Plasma Characteristics of Soil from a Desert Area using LIBS Technique

  • Farooq, W. Aslam;Tawfik, Walid;Al-Mutairi, Fahad N.;Alahmed, Zeyad A.
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.548-558
    • /
    • 2013
  • In this work, laser induced breakdown spectroscopy (LIBS) is used to investigate soil samples collected from different desert areas of Riyadh city in Saudi Arabia. Both qualitative analysis and plasma parameters are studied via the observed LIBS spectra. These experiments have been done using a Spectrolaser-7000 system with 50 mJ fundamental wavelength of Nd:YAG laser and detection delay time of 1 microsecond. Many spectral lines are highly resolved for many elements like Al, Fe, Mg, Si, Mn, Na, Ca and K. The electron temperatures Te and electron densities Ne, for the constituent of generated LIBS plasma, are determined for all the collected samples. It is found that both Te and Ne vary from one desert area to other. This variation is due to the change of the elemental concentration in different desert areas that affects the sample's matrices. Time dependent measurements have also been performed on the soil samples. While the signal-to-base ratio (SBR) reached its optimal value at 1 microsecond, the plasma parameters Ne and Te reach values of $4{\times}10^{17}cm^{-3}$ and 9235 K, respectively, at 2.5 microsecond. The later indicate that the plasma cooling processes are slow in comparison to the previously observed results for metallic samples. The observed results show also that in the future it is possible to enhance the exploitation of LIBS in the remote on-line environmental monitoring application, by following up only the values of Ne and Te for one element of the soil desert sample using an optical fiber probe.

Red supergiant stars in NGC 4449, NGC 5055, and NGC 5457

  • Chun, Sang-Hyun;Sohn, Young-Jong;Asplund, Martin;Casagrande, Luca
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.44.2-45
    • /
    • 2016
  • We present near-infrared photometric properties of red supergiant stars (RSGs) in three galaxies NGC 4449, NGC 5055 and NGC 5457. The near-infrared imaging data of WFCAM UKIRT were used and combined with optical archive data to identify the RSGs in the galaxies. We found that the RSGs can be identified from the foreground Galactic stars in (i-K, ri) colour-colour diagram. The effective temperatures and luminosities of the identified RSGs are estimated from JHK photometry using MARCS model. In the H-R diagram, the majority of RSGs in the galaxies are distributed between $logL/L{\odot}=4.8$ and 5.7, and their effective temperature and luminosities agree with the current evolutionary tracks with masses in the range $9-30M{\odot}$. We also compared the spatial distribution of RSGs with the HII regions. A tight spatial correlation between RSGs and HII region was found in NGC 4449 and NGC 5457. We do not find a clear metallicity dependance on the RSG effective temperature in the three galaxies, but the maximum luminosity of the three galaxies is constant at $logL/L{\odot}{\sim}5.6$. Additional spectroscopy data, including photometry are essential to examine whether the physical properties of RSGs change with metallicity.

  • PDF

Study of Unidentified Spectral Lines in the High-Resolution Spectra of Comet Machholz (C/2004Q2) (Machholz 혜성(C/2004Q2) 고분산 스펙트럼을 이용한 미확인 분광선 연구)

  • Hwang, Sung-Won;Han, Je-Hee;Sim, Chae-Kyung;Kim, Sang-Joon;Jin, Ho;Im, Myung-Shin;Kim, Kang-Min
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.487-498
    • /
    • 2009
  • We observed Comet Machholz (C/2004Q2) using the BOES (BOao Echelle Spectograph) at the Bohyunsan Observatory on January 4, 2005. We have studied a wavelength range of $4800{\sim}8100{\AA}$ in order to investigate unidentified spectral lines in the high-resolution spectra of Machholz. We compared the Machholz spectra with the high-resolution spectra of previous comets: Swift-Tuttle, Brorsen-Metcalf, Austin, and 122P/de Vico. We identified many molecular lines, which are previously unknown; and these identifications will be useful information for studying high-resolution spectra of future comets.

IMS High-z Quasar Survey - Faint z~6 Quasar Candidates in IMS Fields

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.72.4-73
    • /
    • 2015
  • Over the last decade, more than 50 quasars have been discovered at redshift about 6 when reionization of the universe occurred. However, most of them are luminous quasars (zAB < 21 mag), implying that such a biased quasar sample, which cannot represent the entire population of quasars at z~6, is not enough to understand the properties of quasars in the early universe. Recently, we have been performing the Infrared Medium-deep Survey (IMS), a moderately wide (120 deg2) and deep (JAB ~ 22.5 - 23 mag) near-infrared imaging survey. Combining this with the optical (ugriz) imaging data from the CFHT Legacy Survey (CFHTLS), we have identified more than 10 faint quasar candidates at z~6 in the IMS field by using multiple color selection criteria. From now on, we will perform spectroscopic confirmations of these faint quasar candidates with IMACS on the Magellan Baade Telescope at Las Campanas Observatory and GMOS on the Gemini South Telescope at Gemini Observatory. The confirmed quasars will be used to constrain the faint-end slope of the quasar luminosity function at z~6 and calculate the ratio of quasar ionizing flux to required flux for reionization of the universe. Moreover, these confirmed quasars will be followed up with near-infrared spectroscopy to determine their black hole masses and Eddington ratios to check the rapidness of their growth.

  • PDF

Near-infrared Spectroscopy of Iron Knots in Cassiopeia A Supernova Remnant

  • Lee, Yong-Hyun;Koo, Bon-Chul;Moon, Dae-Sik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • Cassiopeia A supernova remnant is a young (~330 yr) remnant of Type IIb SN explosion with a massive progenitor. It shows two distinct optical knots; fast moving ejecta knots (FMKs) and quasi stationary circumstellar knots (QSFs). These knots offer an unique opportunity to explore the details of the explosion and also the end state evolution of the Type IIb SN progenitor. We have obtained NIR long-slit (30") spectra of 7 positions around the bright rim of Cas A in [Fe II] 1.644 micron using Triplespec which is a cross-dispersed near-infrared spectrograph that provides continuous wavelength coverage from 0.95-2.46um at intermediate resolution of 2700. Most of the FMKs show strong sulfur, silicon, and iron forbidden lines but no hydrogen or helium lines. The QSFs, on the other hand, show a much richer spectrum with strong hydrogen, helium, and iron lines, but no sulfur and silicon lines. We measure their fluxes and radial velocities, and derive their physical parameters such as electron density and temperature. We also measure the proper motion of these knots from two [Fe II] 1.644 micron images obtained at 3-year interval. We analyze the physical properties of these knots and discuss the evolution and explosion of the progenitor of Cas A.

  • PDF

Planetary companions orbiting K giant HD 208527 and M giant HD 220074

  • Lee, Byeong-Cheol;Han, Inwoo;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.107.2-107.2
    • /
    • 2012
  • The purpose of the present study is to search for and study the origin of planetary companion by a precise radial velocity (RV) survey for K dwarfs. The high-resolution spectroscopy of the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO) is used from September 2008 to June 2012. We report the detection of two new exoplanets in orbit around HD 208527, and HD 220074 with exhibiting a periodic variation of 875.5 and 672.1 days. The examinations of surface inhomogeneous are no related to the RV variations and Keplerian motion is the most likely explanation, which suggests that the RV variations arise from an orbital motion under the influence of planetary companion. We obtain the minimum masses for the exoplanets of 11.5 and 11.1 MJup with an orbital semi-major axis of 2.3 and 1.6 AU and an eccentricity of 0.08 and 0.14, respectively. From the literatures and our estimations of stellar parameters, the luminosity class of HD 208527 is changed K dwarf to K giant and the spectral type of HD 220074 is confirmed M giant rather than K dwarf. HD 220074 is the first M giant star harboring a planetary companion.

  • PDF

LONG-SLIT SPECTROSCOPY OF PARSEC-SCALE JETS FROM DG TAURI

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.113-123
    • /
    • 2015
  • We present observational results from optical long-slit spectroscopy of parsec-scale jets of DG Tau. From HH 158 and HH 702, the optical emission lines of Hα, [O i] λλ6300, 6363, [N ii] λλ6548, 6584, and [S ii] λλ6716, 6731 are obtained. The kinematics and physical properties (i.e., electron density, electron temperature, ionization fraction, and mass-loss rate) are investigated along the blueshifted jet up to 650′′ distance from the source. For HH 158, the radial velocity ranges from −50 to −250 km s−1. The proper motion of the knots is 0.′′196 − 0.′′272 yr−1. The electron density is ∼104 cm−3 close to the star, and decreases to ∼102 cm−3 at 14′′ away from the star. Ionization fraction indicates that the gas is almost neutral in the vicinity of the source. It increases up to over 0.4 along the distance. HH 702 is located at 650′′ from the source. It shows ∼ −80 km s−1 in the radial velocity. Its line ratios are similar to those at knot C of HH 158. The mass-loss rate is estimated to be about ∼ 10−7 M yr−1, which is similar to values obtained from previous studies.