• Title/Summary/Keyword: spectroscopic analysis method

Search Result 207, Processing Time 0.025 seconds

Fast Analysis of Film Thickness in Spectroscopic Reflectometry using Direct Phase Extraction

  • Kim, Kwangrak;Kwon, Soonyang;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • A method for analysis of thin film thickness in spectroscopic reflectometry is proposed. In spectroscopic reflectometry, there has been a trade-off between accuracy and computation speed using the conventional analysis algorithms. The trade-off originated from the nonlinearity of spectral reflectance with respect to film thickness. In this paper, the spectral phase is extracted from spectral reflectance, and the thickness of the film can be calculated by linear equations. By using the proposed method, film thickness can be measured very fast with high accuracy. The simulation result shows that the film thickness can be acquired with high accuracy. In the simulation, analysis error is lower than 0.01% in the thickness range from 100 nm to 4 um. The experiments also show good accuracy. Maximum error is under $40{\AA}$ in the thickness range $3,000-20,000{\AA}$. The experiments present that the proposed method is very fast. It takes only 2.6 s for volumetric thickness analysis of 640*480 pixels. The study suggests that the method can be a useful tool for the volumetric thickness measurement in display and semiconductor industries.

Analysis of the Scattering Coefficients of Microspheres Using Spectroscopic Optical Coherence Tomography

  • Song, Woosub;Lee, Seung Seok;Lee, Byeong-il;Choi, Eun Seo
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.278-288
    • /
    • 2021
  • We propose a characterization method for the scattering property of microspheres using spectroscopic optical coherence tomography (OCT). To prove the effectiveness of the proposed method, we prepare solutions of different concentrations using microspheres ranging from 28 to 2300 nm in diameter. Time-frequency analysis is performed on the measured interference spectrum of each solution, and the resulting spectroscopic information is converted into histograms for centroid wavelengths. The histograms present a very sensitive response to changes in the concentration and size of microspheres. We classify them into three categories according to their characteristics. When the histogram of each category is replaced with the corresponding calculated value of the scattering coefficient, each category is mapped to a different scattering-coefficient region. It is expected that the proposed method could be used to investigate the optical characteristics of a biological sample from OCT images, which would be helpful for optical diagnostic and therapeutic applications.

Adsorption Kinetics for Polymeric Additives in Papermaking Aqueous Fibrous Media by UV Spectroscopic Analysis

  • Yoon, Sung-Hoon;Chai, Xin-Sheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1819-1824
    • /
    • 2006
  • The general objective of the present study was to investigate the potential application of the UV spectroscopic method for determination of the polymeric additives present in papermaking fibrous stock solutions. The study also intended to establish the surface-chemical retention model associated with the adsorption kinetics of additives on fiber surfaces. Polyamide epichlorohydrin (PAE) wet strength resin and imidazolinium quaternary (IZQ) softening agents were selected to evaluate the analytical method. Concentrations of PAE and IZQ in solution were proportional to the UV absorption at 314 and 400 nm, respectively. The time-dependent behavior of polymeric additives obeyed a mono-molecular layer adsorption as characterized in Langmuir-type expression. The kinetic modeling for polymeric adsorption on fiber surfaces was based on a concept that polymeric adsorption on fiber surfaces has two distinguishable stages including initial dynamic adsorption phase and the final near-equilibrium state. The simulation model predicted not only the real-time additive adsorption behavior for polymeric additives at high accuracy once the kinetic parameters were determined, but showed a good agreement with the experimental data. The spectroscopic method examined on the PAE and IZQ adsorption study could potentially be considered as an effective tool for the wet-end retention control as applied to the paper industry.

Interferometric Snapshot Spectro-ellipsometry: Calibration and Systematic Error Analysis

  • Dembele, Vamara;Choi, Inho;Kheiryzadehkhanghah, Saeid;Choi, Sukhyun;Kim, Junho;Kim, Cheong Song;Kim, Daesuk
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • We describe a calibration method to improve the accuracy of interferometric snapshot spectroscopic ellipsometry employing a dual-spectrometer sensor scheme. Conventional spectral wavelength calibration of a spectrometer has been performed by using a calibration lamp having multiple peaks at specific wavelength. This paper shows that such a conventional spectrometer calibration method is inappropriate for the proposed interferometric snapshot spectroscopic ellipsometry to obtain highly accurate ellipsometric phase information. And also, systematic error analysis of interferometric snapshot spectroscopic ellipsometry is conducted experimentally.

The Weatherproof Detection System of Sea Fog by Remote Sensing and its Applications

  • Bao, Xianwen;Wang, Xin;Sun, Litan;Zhou, Faxiu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1380-1382
    • /
    • 2003
  • Detection of sea fog by remote sensing with spectroscopic analysis method and structural analysis method is introduced in this paper. On this base, designing principles and frame of weatherproof detection system of sea fog by remote sensing are systemically explained. Using GMS5 and NOAA visible and infrared channel data, progresses of sea fog on yellow sea on April 17,18, 2001 is monitored which accord with the observing.

  • PDF

Qualitative and Quantitative Analysis of Space Minerals using Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy (레이저 유도 분해 분광법과 라만 분광법을 이용한 우주 광물의 정성 및 정량 분석 기법)

  • Kim, Dongyoung;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2018
  • In order to analyze space resources, it had to be brought to earth. However, using laser-induced breakdown spectroscopy(LIBS) and Raman spectroscopy, it is possible to analyze qualitative and quantitative analysis of space minerals in real time. LIBS is a spectroscopic method in which a high energy laser is concentrated on a material surface to generate a plasma, and the emitted light is acquired through a spectroscope to analyze the atomic composition. Raman spectroscopy is a spectroscopic method that analyzes the molecular structure by measuring scattered light. These two spectroscopic methods are complementary spectroscopic methods for analyzing the atoms and molecules of unknown minerals and have an advantage as space payloads. In this study, data were analyzed qualitatively by using principal component analysis(PCA). In addition, a mixture of two minerals was prepared and a quantitative analysis was performed to predict the concentration of the material.

Physiological and Spectroscopic Changes of Rice by Nitrogen Fertilization Conditions

  • Jung-Il Cho;Dongwon Kwon;Hoejeong Jeong;Wan-Gyu Sang;Sungyul Chang;Jae-Kyeong Baek
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.106-106
    • /
    • 2022
  • An appropriate amount of nitrogen fertilizer input during rice cultivation is essential for rice growth, quality control, and reduction of greenhouse gases in paddy fields. Therefore, it is necessary to develop a technology that can check whether an appropriate amount of fertilizer is applied in paddy fields. In this study, we tried to derive a method for diagnosing nitrogen fertilization level using spectroscopic diagnosis, physiological analysis, and molecular indicator genes. Nitrogen fertilization treatment was performed in a greenhouse by dividing into five treatment conditions: no fertilization (N0), low fertilization (N0.5), standard fertilization (N1.0), excessive fertilization (N1.5), and double fertilization (N2.0), respectively. Growth characteristics analysis was investigated by nitrogen fertilization conditions and growth stages, and the height of the canopy was analyzed using a laser scanner. Physiological and spectroscopic analyses were performed by analyzing chlorophyll and sugar contents and measuring SPAD and leaf spectrometer on rice leaves. In addition, real-time PCR experiment was performed to check the relative expression levels of several known nitrogen metabolism related genes. These results suggest that spectroscopic techniques can be helpful in diagnosing the level of nitrogen fertilization in rice paddy fields.

  • PDF

Rapid Determination of Seed and Stem Content in Red Pepper Powder by Near-Infrared Reflectance Spectroscopic Analysis (근적외 분광분석법에 의한 분말고추중의 씨앗 및 꼭지혼입량의 신속한 측정)

  • Cho, Rae-Kwang;Sohn, Mi-Ryeong;Ann, Jae-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.447-451
    • /
    • 1991
  • Red pepper peels stored with seeds or stems in the powder state at $30^{\circ}C$ resulted in decrease of quality components such as capsanthin, capsaicin and total sugars. The effect of seeds on the quality deterioration was larger than stems. A near-infrared reflectance spectroscopic(NIRS) method was evaluated for the determination of seed and stem contents in red pepper peels. The standard error of prediction was 1.76% in seeds and 0.43% in stems. It is concluded that the NIRS method is suitable for the determination of seen and stem contents in red pepper powder.

  • PDF

High resolution spectroscopic study of the peculiar globular cluster M22 (NGC 6656)

  • Kim, Hyeong-Jun;Lee, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.65.1-65.1
    • /
    • 2017
  • We present the high-resolution spectroscopic study of the red-giant branch (RGB) stars in the peculiar globular cluster M22 (NGC 6656). We obtained high-resolution spectra of 55 RGB stars using the CTIO 4-m telescope and the HYDRA multi-object spectrograph. By employing an improved LTE analysis method, we measured accurate elemental abundances. In this talk, we will discuss the differences in the chemical composition between the two stellar populations in the context of the formation of M22.

  • PDF

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.