• Title/Summary/Keyword: spectral measurements

Search Result 424, Processing Time 0.026 seconds

Analysis of Digital Water Color for Light Fishing Grounds (디지털 시각화를 이용한 집어등 어장의 수심별 수색분석)

  • Sokjin Choi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.1
    • /
    • pp.88-97
    • /
    • 2024
  • The underwater color environment was assessed by conducting color calculations based on underwater spectral irradiance measurements at various depths. Changes in the distribution of underwater spectral irradiance values between 1 and 3 m, exhibited similar trends in areas Stn. 1, 5, and 6. Likewise, changes between 5 and 20 m displayed comparable patterns in areas Stn. 1, 2, 4, and 6. Color values for each observed area fell between 0.14 and 0.26 (x-values) and 0.2 and 0.36 (y-values), with the y-values exhibiting a variation 1-3 times greater than the x-values. Color a* and b* values ranged from a maximum of -17 and -6 to a minimum of -63 and -30, respectively. By classifying fishing grounds based on observed variations, Stn. 1, 9, Stn. 2, 3, Stn. 7, 8 and Stn. 4, 5, 6 were grouped independently. Particularly, Stn. 5, 6, 7, and 8 were categorized into distinct groups that could be visually differentiated, especially when considering the significant changes in color a* as the water depth increased from 10 to 20 m. Tokyo Bay were classified into different color groups, and Wakayama Prefecture offshore was classified into the same color group as the surveyed fishing grounds.

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

Improved and quality-assessed emission and absorption line measurements in Sloan Digital Sky Survey galaxies

  • Oh, Kyu-Seok;Sarzi, Marc;Schawinski, Kevin;Yi, Suk-Young K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.73.2-73.2
    • /
    • 2011
  • We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting(pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionised gas emission. Most notable of our work is that, we provide quality of the fit to assess reliability of the measurements. The quality assessment can be highly effective for finding new classes of objects. For example, based on the quality assessment around the Ha and [NII] nebular lines, we found approximately 1% of the SDSS spectra which classified as "galaxies" by the SDSS pipeline are in fact type I Seyfert AGN.

  • PDF

Spectral CT Analysis of Hounsfield Unit (HU) according to MonoE (keV) and Dilution Ratio of the Contrast Agent: Use of Spectral CT (단색에너지(keV)와 조영제 희석비율 변화에 따른 HU(Hounsfield Unit)값 분석: Spectral CT 이용)

  • Jung, Hee-Ra;Kang, Jin-woo;Kwon, Oh-Jun;Kim, Ho-Jin;Jung, Dabin;Lee, Jae-Hyun;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.669-676
    • /
    • 2020
  • The purpose of this study was to analyze the changes in the values of Hounsfield Unit (HU) according to the changes in monoenergy (keV) and dilution ratio of the contrast agent, using the spectral CT. Spectral CT was used as the testing device, while 20 cc syringe phantom was used to set a total of six dilution ratios of the contrast agent: 8:2, 7:3, 6:4, 5:5, 4:6, and 3:7. Here, the non-ionic iodine solution (350 mg/ml) was used as a contrast agent. The syringe axial image was reconstructed by adjusting the obtained data on nine MonoE levels; 40 keV, 45 keV, 50 keV, 55 keV, 60 keV, 65 keV, 70 keV, 75 keV, and 80 keV. The HU values were measured at the three points of the reconstructed syringe axial image. The measurements were taken 1,620 times in total. In the analysis of the HU values according to the changes in keV and dilution ratio of the contrast agent, the highest and lowest HU values were obtained from dilution ratio 8:2 and dilution ratio 3:7, respectively, across every MonoE in the comparison of HU according to dilution ratio per MonoE (p<0.05), while the highest and lowest HU values were obtained from 40 keV and 80 keV, respectively, across all dilution ratios in the comparison of HU according to MonoE per dilution ratio (p<0.05). For the correlation per each parameter, a negative correlation of -15.014 ± 0.298 was found for HU per keV (R2=0.519) and a negative correlation of -61.372 ± 3.608 was found for HU per dilution ratio (R2=0.152) (p<0.05). To conclude, an increase in keV or dilution ratio of the contrast agent was shown to decrease the HU, and the findings in this study are anticipated to serve as the basic data in the research of HU-related parameters in Spectral CT.

Synthesis, Physico-Chemical and Biological Properties of Complexes of Cobalt(II) Derived from Hydrazones of Isonicotinic Acid Hydrazide (Isonicotinic Acid Hydrazide의 Hydrazone으로부터 유도된 코발트(II) 착물의 합성, 물리-화학 및 생물학적 성질)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • Hydrazones of isonicotinic acid hydrazide, viz., N-isonicotinamido-furfuralaldimine (INH-FFL), N-isonicotnamido-cinnamalidine (INH-CIN) and N-isonicotnamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) were prepared by reacting isonicotinic acid hydrazide with respective aromatic aldehydes, i.e., furfural, cinnamaldehyde or 3,4,5-trimethoxy-benzaldehyde. A new series of fifteen complexes of cobalt(II) with these new hydrazones, INH-FFL, INH-CIN and INH-TMB, were synthesized by their reaction with cobalt(II) salts. The infrared spectral data reveal that hydrazone ligands behave as a bidentate ligand with N, O donor sequence towards the $Co^{2+}$ ion. The complexes were characterized on the basis of elemental analysis, magnetic susceptibility, conductivity, infrared and electronic spectral measurements. Analytical data reveal that the complexes have general composition [Co($L)_2X_2]\;and\;[Co(L)_3](ClO_4)_2$ where L= INH-FFL, INH-CIN or INH-TMB and X = $Cl^-,{NO_3}-,\;NCS^-\;or\;CH_3COO^-.$ The thermal behaviour of the complexes were studied using thermogravimetrictechnique. Electronic spectral results and magnetic susceptibility measurements are consistent with the adoption of a six-coordinate geometry for the cobalt(II) chelates. The antimicrobial properties of cobalt(II) complexes and few standard drugs have revealed that the complexes have very moderate antibacterial activities.

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.

IDENTIFICATION OF FALSIFIED DRUGS USING NEAR-INFRARED SPECTROSCOPY

  • Scafi, Sergio H.F.;Pasquini, Celio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3112-3112
    • /
    • 2001
  • Near-Infrared Spectroscopy (NIRS) was investigated aiming at the identification of falsified drugs. The identification is based on comparison of the NIR spectrum of a sample with a typical spectra of an authentic drug using multivariate modelling and classification algorithms (PCA/SIMCA). Two spectrophotometers (Brimrose - Luminar 2000 and 2030), based on acoustic-optical filter (AOTF) technology, sharing the same controlling computer, software (Brimrose - Snap 2.03) and the data acquisition electronics, were employed. The Luminar 2000 scans the range 850 1800 nm and was employed for transmitance/absorbance measurements of liquids with a transflectance optical bundle probe with total optical path of 5 mm and a circular area of 0.5 $\textrm{cm}^2$. Model 2030 scans the rage 1100 2400 nm and was employed for reflectance measurement of solids drugs. 300 spectra, acquired in about 20 s, were averaged for each sample. Chemometric treatment of the spectral data, modelling and classification were performed by using the Unscrambler 7.5 software (CAMO Norway). This package provides the Principal Component Analysis (PCA) and SIMCA algorithms, used for modelling and classification, respectively. Initially, NIRS was evaluated for spectrum acquisition of various drugs, selected in order to accomplish the diversity of physico-chemical characteristics found among commercial products. Parameters which could affect the spectra of a given drug (especially if presented as solid tablets) were investigated and the results showed that the first derivative can minimize spectral changes associated with tablet geometry, physical differences in their faces and position in relation to the probe beam. The effect of ambient humidity and temperature were also investigated. The first factor needs to be controlled for model construction because the ambient humidity can cause spectral alterations that should cause the wrong classification of a real drug if the factor is not considered by the model.

  • PDF

Measuring and Modeling the Spectral Attenuation of Light in the Yellow Sea

  • Gallegos, Sonia-C.;Sandidge, Juanita;Chen, Xiaogang;Hahn, Sangbok-D.;Ahn, Yu-Hwan;Iturriaga, Rodolfo;Jeong, Hee-Dong;Suh, Young-Sang;Cho, Sung-Hwam
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • Spectral attenuation of light and upwelling radiance were measured in the western coast of Korea on board the R/V Inchon 888 of the Korean National Fisheries Research and Development Institute(NFRDI) during four seasons. The goal of these efforts was to determine the spatial and temporal distribution of the inherent and apparent optical properties of the water, and the factors that control their distribution. Our data indicate that while stratification of the water column, phytoplankton, and wind stress determined the vertical distribution of the optical parameters offshore, it was the tidal current and sediment type that controlled both the vertical and horizontal distribution in the coastal areas. These findings led to the development of a model that estimates the spectral attenuation of light with respect to depth and time for the Yellow Sea. The model integrates water leaving radiance from satellites, sediment types, current vectors, sigma-t, bathymetry, and in situ optical measurements in a learning algorithm capable of extracting optical properties with only knowledge of the environmental conditions of the Yellow Sea. The performance of the model decreases with increase in depth. The mean absolute percentage error (MAPE) of the model is 2% for the upper five meters, 8-10% between 6 and 50 meters, and 15% below 51 meters.

Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders

  • Le, Thai-Hoa;Matsumoto, Masaru;Shirato, Hiromichi
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.441-455
    • /
    • 2009
  • Studying the spatial distribution in coherent fields such as turbulence and turbulence-induced force is important to model and evaluate turbulence-induced forces and response of structures in the turbulent flows. Turbulence field-based coherence function is commonly used for the spatial distribution characteristic of the turbulence-induced forces in the frequency domain so far. This paper will focus to study spectral coherent structure of the turbulence and induced forces in not only the frequency domain using conventional Fourier transform-based coherence, but also temporo-spectral coherence one in the time-frequency plane thanks to wavelet transform-based coherence for better understanding of the turbulence and force coherences and their spatial distributions. Effects of spanwise separations, bluff body flow, flow conditions and Karman vortex on coherent structures of the turbulence and induced pressure, comparison between turbulence and pressure coherences as well as intermittency of the coherent structure in the time-frequency plane will be investigated here. Some new findings are that not only the force coherence is higher than the turbulence coherence, the coherences of turbulence and forces depend on the spanwise separation as previous studies, but also the coherent structures of turbulence and forces relate to the ongoing turbulence flow and bluff body flow, moreover, intermittency in the time domain and low spectral band is considered as the nature of the coherent structure. Simultaneous measurements of the surface pressure and turbulence have been carried out on some typical rectangular cylinders with slenderness ratios B/D=1 (without and with splitter plate) and B/D=5 under the artificial turbulent flows in the wind tunnel.

Design and Fabrication of a Si pin Photodetector with Peak Spectral Response in the Red Light for Optical Link (적색 중심 Optical Link용 Si pin Photodetector의 설계 및 제작)

  • 장지근;김윤희;이지현;강현구;이상열
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • We have fabricated and evaluated a new Si pin photodetector for APF optical link. The fabricated device has the $p^{+}$-guard ring around the metal-semiconductor contact and the web patterned $p^{+}$-shallow diffused region in the light absorbing area. From the measurements of electo-optical characteristics under the bias of -5 V, the junction capacitance of 4 pF and the dark current of 180 pA were obtained. The optical signal current of 1.22 $\mu$A and the responsivity of 0.55 A/W were obtained when the 2.2 $\mu$W optical power with peak wavelength of 670 nm was incident on the device. The fabricated device showed the maximum spectral response in a spectrum of 650-700 nm. It is expected that the fabricated device can be very useful for detecting the optical signal in the application of red light optics.

  • PDF