• Title/Summary/Keyword: spectral information

Search Result 1,938, Processing Time 0.024 seconds

An Adaptive FIHS Fusion Using Spatial and Spectral Band Characteristics of Remote Sensing Image (위성 영상의 공간 및 분광대역 특성을 활용한 적응 FIHS 융합)

  • Seo, Yong-Su;Kim, Joong-Gon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.125-135
    • /
    • 2009
  • Owing to its fast computing capability for fusing images, the FIHS(Fast Intensity Hue Saturation) fusion is widely used for fusion purposes. However, the FIHS fusion also distorts color in the same way such as the IHS(Intensity Hue Saturation) fusion technique. In this paper, a FIHS fusion technique(FIHS-BR) which reduces color distortion by using the ratio of each spectral band and an adaptive FIHS fusion(FIHS-SABR) using spatial information and the ratio of each spectral band are proposed. The proposed FIHS-BR fusion reduces color distortion by adding different spatial detail improvement values for each spectral band. The spatial detail improvement values are derived from the ratio of spectral band. And the proposed FIHS-SABR fusion reduces more color distortion by readjusting the spatial detail improvement values for each spectral band according to the ratio of the spectral bands. The spatial detail improvement values are derived adaptively from the characteristics of spatial information of the local image. To evaluate the performance of the proposed FIHS-BR fusion and FIHS-SABR fusion, a computer simulation is performed for IKONOS remote sensing image. Results from the experiments show that the proposed methods have less color distortion for the forest regions which reveal severe color distortion in the traditional FIHS fusion. From the evaluation results of the characteristics of spectral information for fused image, we show that the proposed methods have best results.

  • PDF

Analysis of Data Spectral Regrowth from Nonlinear Amplification

  • Amoroso, Frank;Monzingo, Robert A.
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.81-85
    • /
    • 1999
  • The regrowth of OQPSK power spectral sidelobes from AM/AM and AM/PM amplifier nonlinearity is analyzed. The time-domain expression for amplifier output shows how spectral re-growth will depend on the cubic coefficient of the Taylor's series of the amplifier nonlinearity as well as input amplitude ripple. Closed form spectrum calculations show that the spectral sidelobes produced by AM/PM take the same form as those produced by AM/AM. The rate of growth of AM/PM sidelobes is, however, not as great as for AM/AM.

  • PDF

Spectral subtraction based on speech state and masking effect

  • 김우일;강선미;고한석
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.599-602
    • /
    • 1998
  • In this paper, a speech enhancement method based on phonemic properties and masking effect is propsoed. It is a modified type of spectral subtraction wherein the spectral sharpening process is exploited in unvoiced state considering the phonemic properties. The masking threshold is used to remove the residual noise. The proposed spectral subtraction shows similar performance as that of the classical spectral subtraction method in view of the SNR. But by the prposed scheme, the unvoiced sound region is shown to exhibit relatively less signal distortion in the enhanced speech.

  • PDF

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

Apparatus and method for analysing spectral response of a CCD optical sensor using an infrared imaging technique (적외선 영상기법에 의한 CCD 센서의 스펙트럼 응답 특성 분석 기법)

  • Kang Seong-Jun;Na Cheol-Hun;Park Soon-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.25-30
    • /
    • 2006
  • An infrared imaging method is proposed in which direct measurement of the spectral response of CCD sensors can be achieved through digital image processing. This method allows for a simple and economic method to detect the spectral sensitivity of commercialized CCD sensors. The key components of the apparatus are a monochromator, CCD-sample supporter and a personal computer equipped with a digital image processing systems. Tentative experimentation conducted on the commercialized CCD camera has resulted in a fairly consistent agreement with the theoretical model.

Improvement of the Spectral Reconstruction Process with Pretreatment of Matrix in Convex Optimization

  • Jiang, Zheng-shuai;Zhao, Xin-yang;Huang, Wei;Yang, Tao
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.322-328
    • /
    • 2021
  • In this paper, a pretreatment method for a matrix in convex optimization is proposed to optimize the spectral reconstruction process of a disordered dispersion spectrometer. Unlike the reconstruction process of traditional spectrometers using Fourier transforms, the reconstruction process of disordered dispersion spectrometers involves solving a large-scale matrix equation. However, since the matrices in the matrix equation are obtained through measurement, they contain uncertainties due to out of band signals, background noise, rounding errors, temperature variations and so on. It is difficult to solve such a matrix equation by using ordinary nonstationary iterative methods, owing to instability problems. Although the smoothing Tikhonov regularization approach has the ability to approximatively solve the matrix equation and reconstruct most simple spectral shapes, it still suffers the limitations of reconstructing complex and irregular spectral shapes that are commonly used to distinguish different elements of detected targets with mixed substances by characteristic spectral peaks. Therefore, we propose a special pretreatment method for a matrix in convex optimization, which has been proved to be useful for reducing the condition number of matrices in the equation. In comparison with the reconstructed spectra gotten by the previous ordinary iterative method, the spectra obtained by the pretreatment method show obvious accuracy.

HYPERSPECTRAL IMAGERY AND SPECTROSCOPY FOR MAPPING DISTRIBUTION OF HEAVY METALS ALONG STREAMLINES

  • Choe, Eun-Young;Kim, Kyoung-Woong;Meer, Freek Van Der;Ruitenbeek, Frank Van;Werff, Harald Van Der;Smeth, Boudewijn De
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.397-400
    • /
    • 2007
  • For mapping the distribution of heavy metals in the mining area, field spectroscopy and hyperspectral remote sensing were used in this study. Although heavy metals are spectrally featureless from the visible to the short wave infrared range, possible variations in spectral signal due to heavy metals bound onto minerals can be explained with the metal binding reaction onto the mineral surface. Variations in the spectral absorption shapes of lattice OH and oxygen on the mineral surface due to the combination of heavy metals were surveyed over the range from 420 to 2400 nm. Spectral parameters such as peak ratio and peak area were derived and statistically linked to metal concentration levels in the streambed samples collected from the dry stream channels. The spatial relationships between spectral parameters and concentrations of heavy metals were yielded as well. Based on the observation at a ground level for the relationship between spectral signal and metal concentration levels, the spectral parameters were classified in a hyperspectral image and the spatial distribution patterns of classified pixels were compared with the product of analysis at the ground level. The degree of similarity between ground dataset and image dataset was statistically validated. These techniques are expected to support assessment of dispersion of heavy metal contamination and decision on optimal sampling point.

  • PDF

Detection of Individual Tree Species Using Object-Based Classification Method with Unmanned Aerial Vehicle (UAV) Imagery

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • This study was performed to construct tree species classification map according to three information types (spectral information, texture information, and spectral and texture information) by altitude (30 m, 60 m, 90 m) using the unmanned aerial vehicle images and the object-based classification method, and to evaluate the concordance rate through field survey data. The object-based, optimal weighted values by altitude were 176 for 30 m images, 111 for 60 m images, and 108 for 90 m images in the case of Scale while 0.4/0.6, 0.5/0.5, in the case of the shape/color and compactness/smoothness respectively regardless of the altitude. The overall accuracy according to the type of information by altitude, the information on spectral and texture information was about 88% in the case of 30 m and the spectral information was about 98% and about 86% in the case of 60 m and 90 m respectively showing the highest rates. The concordance rate with the field survey data per tree species was the highest with about 92% in the case of Pinus densiflora at 30 m, about 100% in the case of Prunus sargentii Rehder tree at 60 m, and about 89% in the case of Robinia pseudoacacia L. at 90 m.

Bandwidth Expansion Method Using Spline Codebook Based Spectral Folding (Spline 코드북 기반의 spectral folding을 이용한 대역폭 확장 방법)

  • Park, Ji-Hoon;Han, Seung-Ho;Yang, Hee-Sik;Jeong, Sang-Bae;Hahn, Min-Soo
    • Proceedings of the KSPS conference
    • /
    • 2006.11a
    • /
    • pp.131-134
    • /
    • 2006
  • Quality of narrowband speech $(0{\sim}4kHz)$ can be enhanced by the bandwidth expansion technique, by which the high- band components are estimated. This paper proposes the bandwidth expansion method using the spline codebook based spectral folding. For the performance evaluation, the PESQ(Perceptual Evaluation of Speech Quality) scores are measured as the objective measurement In addition, the MOS (Mean Opinion Score) and the preference tests are performed as the subjective measurement. The results show our proposed method outperforms the existing spline based one.

  • PDF

A Fast Algorithm for Target Detection in High Spatial Resolution Imagery

  • Kim Kwang-Eun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.7-14
    • /
    • 2006
  • Detection and identification of targets from remotely sensed imagery are of great interest for civilian and military application. This paper presents an algorithm for target detection in high spatial resolution imagery based on the spectral and the dimensional characteristics of the reference target. In this algorithm, the spectral and the dimensional information of the reference target is extracted automatically from the sample image of the reference target. Then in the entire image, the candidate target pixels are extracted based on the spectral characteristics of the reference target. Finally, groups of candidate pixels which form isolated spatial objects of similar size to that of the reference target are extracted as detected targets. The experimental test results showed that even though the algorithm detected spatial objects which has different shape as targets if the spectral and the dimensional characteristics are similar to that of the reference target, it could detect 97.5% of the targets in the image. Using hyperspectral image and utilizing the shape information are expected to increase the performance of the proposed algorithm.

  • PDF