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ABSTRACT For mapping the distribution of heavy metals in the mining area, field spectroscopy and hyperspectral
remote sensing were used in this study. Although heavy metals are spectrally featureless from the visible to the short
wave Infrared range, possible variations in spectral signal due to heavy metals bound onto minerals can be explained
with the metal binding reaction onto the mineral surface. Variations in the spectral absorption shapes of lattice OH and
oxygen on the mineral surface due to the combination of heavy metals were surveyed over the range from 420 to 2400
nm. Spectral parameters such as peak ratio and peak area were derived and statistically linked to metal concentration
levels in the streambed samples collected from the dry stream channels. The spatial relationships between spectral
parameters and concentrations of heavy metals were yielded as well. Based on the observation at a ground level for the
relationship between spectral signal and metal concentration levels, the spectral parameters were classified in a
hyperspectral image and the spatial distribution patterns of classified pixels were compared with the product of analysis
at the ground level. The degree of similarity between ground dataset and image dataset was statistically validated.

These techniques are expected to support assessment of dispersion of heavy metal contamination and decision on
optimal sampling point.

KEY WORDS: Heavy Metal, Hyperspectral Remote Sensing, Mapping, Spectral Parameter, Spectroscopy

1. INTRODUCTION 2. MATERIALS AND METHODS

To survey the spatial distribution of heavy metals,
general methods involving the systematic sampling and
laboratory analysis of environmental samples follow
interpolation of the point results in compiling distribution

2.1 Field Sample Analysis

2.1.1 Measurement: For the observation at the ground
level, sediment samples were collected along the dry

maps (Ferrier, 1999; Kemper and Sommer, 2002). Such
an approach 1s time-consuming and costly. Remote
sensing has been applied to the rapid and broad
investigation of the dispersion of pollution and the use of
hyperspectral data has improved upon previous results.

While heavy metals are known to be spectrally
featureless from the visible to the short wave infrared
range, possible variations in spectral signal due to heavy
metals bound onto minerals can be explained with the
metal binding reaction onto the mineral surface.

In this study, field spectroscopy and hyperspectral
remote sensing are used for mapping the distribution of
heavy metals in the mining area. This study focus on
finding spectral parameters which can represent metal
concentrations based on the heavy metal binding
mechanism and comparing the spatial distribution of

spectral parameters and geochemical values in the
mapping results.

stream channel around the Au and Pb-Ag mining area.
Samples were sieved in the field to obtain the fraction
smaller than 2 mm. For the analysis of sediment samples,
As and Zn were considered to be indicative of
environmental pollution and were chemically analyzed
using ICP-AES and AAS. The reflectance signal in the
VNIR (visible and near-infrared) and SWIR (short wave
infrared) range was measured using ASD FieldSpec Pro
under laboratory conditions.

2.1.2 Derivation of Spectral Parameters: Variations
in spectral absorption shapes of lattice OH and oxygen on
the mineral surface due to the combination of heavy
metals were surveyed over the range from 420 to 1400
nm and from 2100 to 2400 nm. Spectral parameters such
as peak ratio and area were derived and statistically
linked to metal concentration levels in the streambed
samples collected from the dry stream channels (Figure
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1). The binding reaction of metal cations (M*") on such
hydroxylated surface sites (ROH, R can be Al, Fe, Mn, Si,
etc.) of clay or metal oxide minerals are generaily
described as follows (Robert et al., 2005):

ROH + M*=ROM" + H" (1)
ROH + M™ = RO-M' + H' (2)

The spectral features of ROH and RO (e.g., FeO) in
clay and oxide minerals whose positions are assigned at
around 2200 nm and from 500 to 1000 nm, respectively
(Ben-Dor, 1999), may change once heavy metals are
bound to the minerals.

2.2 Hyperspectral Imagery

2.2.1 Image data: The airborne imaging spectrometer
HyMAP operated by HyVista Corporation was used in
this study which acquired in 2004 (Figure 2). The sensors
collected reflected solar radiation in 126 narrow bands
over the 450-2500 nm wavelength range and with a 4 m
spatial resolution. The HyMAP data was atmospherically
and geometrically corrected using the ATCOR 4 model.
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Figure 1. Variations in the spectral absorption shape
in the VNIR and SWIR range. (a) Ratio of 1344 to
778 nm (P2/P1) in the VNIR regton. (b) Absorption
area (A) at about 2200 nm for sediment samples
including 370 ppm of heavy metal.
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Figure 2. HyMAP™ image acquired in 2004 on which
landmarks for this study such as streamline and sampling
points are overlaid.

2.2.2 Classification: For mapping spectral parameter
using HyMAP data, image-processing techniques such as
continuum-removal, normalization, and calculation of
parameters were applied. A 40 m wide bufferzone from
the streamline was considered as a study section to focus
on the spread of pollution by stream water during the
rainy season. The linking process of spectral parameters
to heavy metal levels was simplified via a binary fitness
function (Legg et al., 2004; Debba et al., 2005) that
enables classification of areas affected by heavy metals:

0, if S(x,)<S,
W, (x;‘,j) = 1, lf‘ S(xi,}-) > St

3)

where Xx, ., i= 1,2,..n, and j = 1,2,...,m, represent

1,j
the pixel spectra associated with the spatial location, I ,

and j , respectively, and S(x, ;) is each spectral

parameter value. A threshold (S, ) was assigned from

representative values of spectral parameters determined
from ground analysis.

3. RESULTS AND DISCUSSION

3.1 Relationship between Geochemical Values and
Spectral Parameters

The strengths of the relationships between spectral
parameters and heavy metal levels were measured using
Pearson’s correlation, as summarized in Table 1. Arsenic
concentrations showed a statistically significant
correlation with Rs44775 at the 0.05 of p-value. Arsenic
was paired with Risun73 value for comparison. The
correlation between Zn level and Ao in the SWIR range
revealed a relatively high negative r-value (p = 0.001).
When heavy metals combine to the surface functional
group, e.g., ROH (Formulas 1 and 2), it is possible that
the spectral absorption shape of the molecule at the
assigned spectral position might weaken because of a
decrease in the amount of ROH at the mineral surface.
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Table 1. Pearson’s correlations between spectral
parameters and heavy metal concentrations.

Table 3. The one-way ANOVA result between image and
ground dataset for Ryz44/778 and Ajsgg

Element Ri344/778 Az200
r-value p-value r-value p-value
As 0.258 0.048*
Zn —0.438 0.001**

* Correlation is significant at the 0.05 level.
** Correlation is significant at the 0.01 level.

Although the results of Pearson’s correlation was
insufficient in terms of developing a quantitative model
for directly predicting heavy metal concentrations from
spectral parameters, the relationships indicated the
potential of semi-quantitative mapping.

3.2 Comparison of Mapping Results between Ground
Dataset and Image Dataset

The spectral parameter values were compared between
HyMAP data and ground data in Table 2. The R344/775 Of
image dataset showed comparable patterns to the results
of the ground dataset. The ANOVA results summarized
in Table 3 describe the relationship between spectral
parameters on the ground and those obtained from
images. The p-values (< 0.05) and F-values (> Fcar) for
Ay parameter indicated a significant difference
between the image and ground datasets for each of the
sampling points. The one-way ANOVA within each
stream section was also calculated because the
populations of these parameters recorded different mean
values in each stream section (Table 3). The ANOVA
results in divided sections for Aj,g, path-I and path-III
exhibited no significant difference between the two
populations. The F value calculated for image and ground
Ri344/773 In whole area was smaller than the corresponding
Fitica (p = 0.859). It could therefore be concluded that
there were no significant differences in Rjsi4775 values,
and that the ANOVA results for all stream sections also
showed statistical similarity between two datasets. The
differences in spectral parameter values between image
and ground data can be explained in terms of the
contrasting scales of observation (Kim and Barros, 2002).

Table 2. Comparison of mean values of spectral

parameters between image dataset and ground dataset in
each stream section

Parameter| ANOVA | Path-I |2 L&} b1l [Copath-T|  Total
Copath-I
Ri344/778 F 0.705 0.048 0.035 0.264 0.032
pvalue | 0.412% | 0.830% | 0.854% | 0.626% | 0.859*
Fowea | 4414 | 4747 | 4747 | 5987 | 4.020
Az F | 2619 | 20239 | 0.732 | 93.179 | 11.293
pvalue | 0.123% | 0.001 | 0.409* | 0.000 | 0.001
Fowen | 4414 | 4747 | 4747 | 5318 | 4.013

Parameter | Path-I I(’:aotl;;lﬁliglc Path-IIT | Copath-II
Ground | R\ 1.325 1.318 1.435 1.374
Ao 34.4 25.1 11.1 50.4
Image [ Ryipume 1.356 1357 1.342 1.331
Az00 21.9 6.7 28.8 12.6

* No significant differences at p > 0.05.

4. CONCLUSION

In this study, we focused on finding spectral
parameters to represent heavy metal levels for mapping
their distribution and assessing the possibility of applying
the parameters to hyperspectral imagery.

Ratio of 1344 to 778 nm (Rj344/773) In the VNIR range
and peak area at 2200 nm (Aj0) 1n the SWIR range were
considered as the spectral parameter to enable mapping
of variations associated with heavy metal concentrations.
In terms of the pairs of spectral parameters and heavy
metal concentrations, Riss4775 and As and A, and Zn
showed statistically significant relationships. However,
the strengths of these relationships were insufficient in
terms of quantitatively representing heavy metal levels
based on spectral parameters. The results indicated that
the spectral parameters could be used for semi-
quantitative mapping of the distribution or dispersion of
pollution. -

For the spectral parameters calculated from HyMAP
image, the spatial pattern of classified pixels in the rule
images of the Rjssr7s, and Ay parameters was
somewhat similar to the spectral parameter distribution of
sediment samples. For the ANOVA result, while Ry344/773
was statistically similar in the image and ground datasets,
Ajgo was only partly similar. The different observation
scales of the two datasets might explain the differences in
spectral parameter values.

Although there are many complications and limitations
in terms of using spectroscopy and remote sensing
techniques in quantifying environmental events, these
techniques are expected to support assessment of
dispersion of heavy metal contamination and decision on
optimal sampling point.
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